Applications of Nanotechnology in Food Packaging: Usage of Inorganic Nanoparticles (Turkish with English Abstract)
Year 2014,
Volume: 39 Issue: 3, 187 - 194, 01.06.2014
Süleyman Polat
,
Hasan Fenercioğlu
Abstract
Research and development activities that help to improve the shelf-life and safety of foods for the improvement of packaging materials to preserve the nutritional value are continued. Nanotechnology is also used in research and development activities. Materials may exhibit some different properties when reduced into nano-scale than they were in macroscopic size. The use of nanoparticles as the filler material in producing food packaging material, whereby to improve the properties of packaging material is known to have beneficial effects on the shelf life of foods. The use of inorganic nanoparticles in nanocomposite packaging film production, is a relatively new research area. In this review, the potential uses of inorganic nanoparticles to production of food packaging material and the nanocomposite films features which are produced from inorganic nanoparticles of silver, zinc oxide and titanium dioxide are explained.
References
- ‹çier F, Baysal T. 2012, Gıda Teknolojisinde Minimal ‹flleme, Gıda Mühendisli¤inde Isıl Olmayan Teknolojiler, Baysal T, ‹çier F (bafl editor), Nobel Akademik Yayıncılık, Türkiye, s. 1-10.
- Ayhan Z. 2012, Yeni Ambalaj Teknolojileri, Gıda Mühendisli¤inde Isıl Olmayan Teknolojiler, Baysal T, ‹çier F (bafl editor), Nobel Akademik Yayıncılık, Ankara, Türkiye, s. 43-75.
- Ohlsson T, Bengtsson N. 2002. Minimal processing technologies in the food industry. CRC Press, Boca Raton, 288 pp.
- Bilek SE. 2012. Vurgulu Elektrik Alan, Gıda Mühendisli¤inde Isıl Olmayan Teknolojiler, Baysal T, ‹çier F (bafl editör), Nobel Akademik Yayıncılık, Ankara, Türkiye, s. 261-280.
- Ünlütürk S. 2012, Ultraviyole (Mor Ötesi) Iflınlama, Gıda Mühendisli¤inde Isıl Olmayan Teknolojiler, Baysal T, ‹çier F (bafl editor), Nobel Akademik Yayıncılık, Türkiye, s. 261-280.
- Pala ÇU, Toklucu AK. 2013. Microbial, physicochemical and sensory properties of UV-C processed orange juice and its microbial stability during refrigerated storage. Food Sci Technol, 50:426-431.
- Kuflçu A, Pazır F. 2004. Gıda Endüstrisinde Ozon Uygulamaları. GIDA, 29(2):123-129.
- Kim JG, Yousef AE, Dave S. 1999. Application of ozone for enhancing the microbiological safety and quality of foods: a review. J Food Prot, 62(9): 1071-1087.
- Dunne CP., Kluter RA. 2001. Emerging non-thermal processing technologies: criteria for success. Aust J Dairy Technol, 56 (2)109-112.
- TÜB‹TAK. 2012. http://www.tubitak.gov.tr/ tubitak_content_files/TEYDEB/1511/gida/1511- GIDA-2012-GHS-02.pdf (Eriflim Tarihi: 06.10.2013).
- Kankaya T. 2011. Farklı poliolefin/kil nanokompozit malzemeler ile üretilen ambalajların diyet bisküvilerin kalitesine etkisinin belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisli¤i Anabilim Dalı Yüksek Lisans Tezi, Isparta, Türkiye, 83 s.
- Han JH. Packaging for Nonthermal Processing of Food, Wiley-Blackwell Pub., Iowa, (2008). Pp:248. 13. Anonim 2013. < http:// http://tr.wikipedia. org/wiki/Nanoteknoloji
- Anonim 2013. Innovative Research and Products Inc., Nano-enabled Packaging for the Food and Beverage Industry–A Global Technology, Industry and Market Analysis, 2009.
- Duncan TV. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci, 363,(1) 1-24.
- Wang N, Zhao C, Shi Z, Shao Y, Li H, Gao N. 2009. Co-incorporation of MMT and MCM-41 nanomaterials used as fillers in PP composite. Mater Sci Eng: B, 157,(1-3), 44-47.
- Tang S, Zou P, Xiong H, Tang H. 2008. Effect of nano-SiO2on the performance of starch/polyvinyl alcohol blend films. Carbohydr Polym, 72(3), 521-526. 18. Jia X, Li Y, Cheng Q, Zhang S, Zhang B. 2007. Preparation and properties of poly(vinyl alcohol)/ silica nanocomposites derived from copolymerization of vinyl silica nanoparticles and vinyl acetate. Eur Polym J, 43 (4) 1123-1131.
- Kim JY, Han SI, Kim SH. 2007. Crystallization Behaviors and Mechanical Properties of Poly(ethylene 2,6-naphthalate)/Multiwall Carbon Nanotube Nanocomposites. Polym Eng Sci, 47 (11) 1715-1723.
- Kim JY, Han SI, Kim DK, Kim SH. 2009. Mechanical reinforcement and crystallization behavior of poly(ethylene 2,6-naphthalate) nanocomposites induced by modified carbon nanotube. Composites Part A: Appl Sci Manuf, 40 (1) 45-53.
- Prashantha K, Soulestin J, Lacrampe MF, Krawczak P, Dupin G, Claes M. 2009. Masterbatch- based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties. Compos Sci Technol, 69 (11-12),1756-1763.
- Chen Y, Cao X, Chang PR, Huneault MA. 2008. Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym, 73,(1)8-17.
- Kristo E, Biliaderis CG. 2007. Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym, 68,(1) 146-158.
- de Moura MR, Aouada FA, Avena-Bustillos RJ, Mchugh TH, Krochta JM, Mattoso LHC. 2009. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng, 92 (4), 448-453.
- de Moura MR, Lorevice MV, Mattoso LHC, Zucolotto V. 2011. Highly Stable, Edible Cellulose Films Incorporating Chitosan Nanoparticles. J Food Sci, 76 (2), N25-N29.
- Lee JH, Jung D, Hong CE, Rhee KY, Advani SG. 2005. Properties of polyethylene-layered silicate nanocomposites prepared by melt intercalation with a PP-g-MA compatibilizer. Compos Sci Technol, 65 (13), 1996–2002.
- Dadbin S, Noferesti M, Frounchi M. 2008. Oxygen Barrier LDPE/LLDPE/Organoclay Nano- Composite Films for Food Packaging. Macromol Symp, 274, 22–27.
- Üçüncü M. 2007. Gıda Ambalajlama Teknolojisi, Meta Basım, ‹zmir, Türkiye. 879 p.
- Ray SS, Yamada K, Okamoto M, Ueda K. 2002. Polylactide-Layered Silicate Nanocomposite: A Novel Biodegradable Material. Nano Lett, 2 (10), 1093-1096.
- Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. 2011. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine, 7 (2), 184-192.
- US Food and Drug Administration, Fed. Regist. 74 (2009) 11476.
- Fernandez A, Picouet P, Loret E. 2010. Cellulose- silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int J Food Microbiol, 142(1-2), 222-228.
- Zhou L, Lv S, He G, He Q, Shi B. Effect of PE/AG2O nano-packaging on the quality of apple slices. J Food Qual, 34 (3), 171-176.
- Emamifar A, Kadivar M, Shahedi M, Soleimanian- Zad S. 2011. Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control, 22 (3-4), 408-413.
- Sun L, Rippon JA, Cookson PG, Koulaeva O, Wang X. 2009. Effects of undoped and manganese- doped zinc oxide nano particles on the colour fading of dyed polyester fabrics. Chem Eng J, 147(2-3), 391-398.
- Rostan EF, Debuys HV, Madey DL, Pinnell SR. 2002. Evidence supporting zinc as an important antioxidant for skin. Int J Dermatol, 41(9), 606-611. 39. Steele R. 2000. Understanding and measuring the shelf-life of food, Woodhead Publishing Limited, Cambridge, England, Pp:383.
- Coles R. 2003. Food Packaging Technology. Blackwell Pub. Ltd, London, Great Britain, Pp: 338. 41. Li, XH, Xing YG, Jiang YH, Ding YL, Li WL. 2009b. Antimicrobial activities of ZnO powder- coated PVC film to inactivate food pathogens. Int J Food Sci Technol, 44, 2161-2168.
- Jin T, Sun D, Su JY, Zhang H, Sue H. 2009. Antimicrobial efficacy of zinc oxide quantum dots against L. monocytogenes, S. enteritidis, and E. coliO157:H7. J Food Sci,74 (1), M46-M52.
- Emamifier A, Kadivar M, Shahedi M, Soleimanian- Zad S. 2010. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci Emerg Technol, 11 (4), 742-748.
- Li X, Li W, Jiang Y, Ding Y, Yun J, Tang Y, Zhang P. 2011. Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’ apple. Int J Food Sci Technol, 46, 1947–1955.
- Lepot N, Van Bael MK, Van Den Rul H, D’haen J, Peeters R, Franco D, Mullens J. 2011. Influence of Incorporation of ZnO Nanoparticles and Biaxial Orientation on Mechanical and Oxygen Barrier Properties of Polypropylene Films for Food Packaging Applications. J Appl Poly Sci, 120(3), 1616-1623.
- Han YS, Nie LH. 2004. The mechanism of protecting fresh and preparation of nano TiO2thin film. Journal of Zhuzhou Institute of Technology, 18, pp. 148-150
- Maneerat C, Hayata Y, Egashira N, Sakamoto K, Hamai Z, Kuroyanagi M. 2003. Photocatalytic reaction of TiO2to decompose ethylene in fruit and vegetable storage. ASABE, 46(3): 725-730.
- Maneerat C, Hayata Y. 2008. Photocatalytic gas_phase photocatalytic oxidation of ethylene with TiO2coated packaging film for horticulturel Products. ASABE, 51(1): 163-168.
- Jing Z, Guo D, Wang W, Zhang S, Qi W, Ling B. 2011. Comparative study of titania nanoparticles and nanotubes as antibacterial agents. Solid State Sci, 13 (9), 1797-1803.
- Kim B, Kim D, Cho D, Cho S. 2003. Bactericidal effect of TiO2photocatalyst on selected food- borne pathogenic bacteria. Chemosphere, 52 (1), 277-281. 50.
- Chawengkijwanich C, Hayata Y. 2008. Development of TiO2
- packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol, 123 (3), 288-292.
- Cheng Q, Li C, Pavlinek V, Saha P, Wang H. 2006. Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties. Appl Surf Sci, 252 (12) 4154-4160.
- Wu TS, Wang KX, Li GD, Sun SY, Sun J, Chen JS. 2010. Montmorillonite-Supported Ag/TiO2 Nanoparticles: An Efficient Visible-Light Bacteria Photodegradation Material. ACS Appl Mater Int, 2 (2), 544-550.
- Hu Q, Fang Y, Yang Y, Ma N, Zhao L. 2011. Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit (Actinidia deliciosa) during cold storage. Food Res Int, 44 (6), 1589-1596.
- Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q. 2009 Effect of nano-packing on preservation quality of Chinese Jujube (Ziziphus jujuba Mill. var. inermis (Bungu) Rehd). Food Chem, 114 (2), 547-552.
- Yang FM, Li HM, Li F, Xin ZH, Zhao LY, Zheng YH, Hu QH. 2010. Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4 degrees C. J Food Sci, 75 (3), C236-C240.
Gıda Ambalajlamasında Nanoteknoloji Uygulamaları: İnorganik Nanopartiküllerin Kullanımı
Year 2014,
Volume: 39 Issue: 3, 187 - 194, 01.06.2014
Süleyman Polat
,
Hasan Fenercioğlu
Abstract
Gıdaların besin değerini koruyarak raf ömrünü güvenli biçimde artırmayı sağlayan ambalaj malzemeleri geliştirilmesi konusunda araştırma ve geliştirme faaliyetleri devam etmektedir. Araştırma ve geliştirme çalışmalarında nanoteknolojiden de yararlanılmaktadır. Nano boyuta küçültülen malzemeler makroskobik boyutta sahip olduğu özelliklerinden farklı davranışlar gösterebilmektedir. Gıda ambalaj malzemesi üretiminde nanoparçacıkların dolgu materyali olarak kullanımının, ambalaj malzemesinin özelliklerini geliştirdiği bu sayede gıdaların raf ömrü üzerine olumlu etkilerinin olduğu bilinmektedir. Nanokompozit ambalaj filmi üretiminde, inorganik nanopartiküllerin kullanımı ise yeni sayılabilecek bir araştırma konusudur. Bu derlemede gıda ambalaj malzemesi üretiminde inorganik nanopartiküllerden gümüş, çinko oksit ve titanyum dioksitin potansiyel kullanımları ve üretilen nanokompozit filmlerin özellikleri açıklanmaya çalışılmıştır. Anahtar kelimler: Nanokompozit, antibakteriyel, gümüş, çinko oksit, titanyum dioksit
References
- ‹çier F, Baysal T. 2012, Gıda Teknolojisinde Minimal ‹flleme, Gıda Mühendisli¤inde Isıl Olmayan Teknolojiler, Baysal T, ‹çier F (bafl editor), Nobel Akademik Yayıncılık, Türkiye, s. 1-10.
- Ayhan Z. 2012, Yeni Ambalaj Teknolojileri, Gıda Mühendisli¤inde Isıl Olmayan Teknolojiler, Baysal T, ‹çier F (bafl editor), Nobel Akademik Yayıncılık, Ankara, Türkiye, s. 43-75.
- Ohlsson T, Bengtsson N. 2002. Minimal processing technologies in the food industry. CRC Press, Boca Raton, 288 pp.
- Bilek SE. 2012. Vurgulu Elektrik Alan, Gıda Mühendisli¤inde Isıl Olmayan Teknolojiler, Baysal T, ‹çier F (bafl editör), Nobel Akademik Yayıncılık, Ankara, Türkiye, s. 261-280.
- Ünlütürk S. 2012, Ultraviyole (Mor Ötesi) Iflınlama, Gıda Mühendisli¤inde Isıl Olmayan Teknolojiler, Baysal T, ‹çier F (bafl editor), Nobel Akademik Yayıncılık, Türkiye, s. 261-280.
- Pala ÇU, Toklucu AK. 2013. Microbial, physicochemical and sensory properties of UV-C processed orange juice and its microbial stability during refrigerated storage. Food Sci Technol, 50:426-431.
- Kuflçu A, Pazır F. 2004. Gıda Endüstrisinde Ozon Uygulamaları. GIDA, 29(2):123-129.
- Kim JG, Yousef AE, Dave S. 1999. Application of ozone for enhancing the microbiological safety and quality of foods: a review. J Food Prot, 62(9): 1071-1087.
- Dunne CP., Kluter RA. 2001. Emerging non-thermal processing technologies: criteria for success. Aust J Dairy Technol, 56 (2)109-112.
- TÜB‹TAK. 2012. http://www.tubitak.gov.tr/ tubitak_content_files/TEYDEB/1511/gida/1511- GIDA-2012-GHS-02.pdf (Eriflim Tarihi: 06.10.2013).
- Kankaya T. 2011. Farklı poliolefin/kil nanokompozit malzemeler ile üretilen ambalajların diyet bisküvilerin kalitesine etkisinin belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisli¤i Anabilim Dalı Yüksek Lisans Tezi, Isparta, Türkiye, 83 s.
- Han JH. Packaging for Nonthermal Processing of Food, Wiley-Blackwell Pub., Iowa, (2008). Pp:248. 13. Anonim 2013. < http:// http://tr.wikipedia. org/wiki/Nanoteknoloji
- Anonim 2013. Innovative Research and Products Inc., Nano-enabled Packaging for the Food and Beverage Industry–A Global Technology, Industry and Market Analysis, 2009.
- Duncan TV. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci, 363,(1) 1-24.
- Wang N, Zhao C, Shi Z, Shao Y, Li H, Gao N. 2009. Co-incorporation of MMT and MCM-41 nanomaterials used as fillers in PP composite. Mater Sci Eng: B, 157,(1-3), 44-47.
- Tang S, Zou P, Xiong H, Tang H. 2008. Effect of nano-SiO2on the performance of starch/polyvinyl alcohol blend films. Carbohydr Polym, 72(3), 521-526. 18. Jia X, Li Y, Cheng Q, Zhang S, Zhang B. 2007. Preparation and properties of poly(vinyl alcohol)/ silica nanocomposites derived from copolymerization of vinyl silica nanoparticles and vinyl acetate. Eur Polym J, 43 (4) 1123-1131.
- Kim JY, Han SI, Kim SH. 2007. Crystallization Behaviors and Mechanical Properties of Poly(ethylene 2,6-naphthalate)/Multiwall Carbon Nanotube Nanocomposites. Polym Eng Sci, 47 (11) 1715-1723.
- Kim JY, Han SI, Kim DK, Kim SH. 2009. Mechanical reinforcement and crystallization behavior of poly(ethylene 2,6-naphthalate) nanocomposites induced by modified carbon nanotube. Composites Part A: Appl Sci Manuf, 40 (1) 45-53.
- Prashantha K, Soulestin J, Lacrampe MF, Krawczak P, Dupin G, Claes M. 2009. Masterbatch- based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties. Compos Sci Technol, 69 (11-12),1756-1763.
- Chen Y, Cao X, Chang PR, Huneault MA. 2008. Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym, 73,(1)8-17.
- Kristo E, Biliaderis CG. 2007. Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym, 68,(1) 146-158.
- de Moura MR, Aouada FA, Avena-Bustillos RJ, Mchugh TH, Krochta JM, Mattoso LHC. 2009. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng, 92 (4), 448-453.
- de Moura MR, Lorevice MV, Mattoso LHC, Zucolotto V. 2011. Highly Stable, Edible Cellulose Films Incorporating Chitosan Nanoparticles. J Food Sci, 76 (2), N25-N29.
- Lee JH, Jung D, Hong CE, Rhee KY, Advani SG. 2005. Properties of polyethylene-layered silicate nanocomposites prepared by melt intercalation with a PP-g-MA compatibilizer. Compos Sci Technol, 65 (13), 1996–2002.
- Dadbin S, Noferesti M, Frounchi M. 2008. Oxygen Barrier LDPE/LLDPE/Organoclay Nano- Composite Films for Food Packaging. Macromol Symp, 274, 22–27.
- Üçüncü M. 2007. Gıda Ambalajlama Teknolojisi, Meta Basım, ‹zmir, Türkiye. 879 p.
- Ray SS, Yamada K, Okamoto M, Ueda K. 2002. Polylactide-Layered Silicate Nanocomposite: A Novel Biodegradable Material. Nano Lett, 2 (10), 1093-1096.
- Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. 2011. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine, 7 (2), 184-192.
- US Food and Drug Administration, Fed. Regist. 74 (2009) 11476.
- Fernandez A, Picouet P, Loret E. 2010. Cellulose- silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. Int J Food Microbiol, 142(1-2), 222-228.
- Zhou L, Lv S, He G, He Q, Shi B. Effect of PE/AG2O nano-packaging on the quality of apple slices. J Food Qual, 34 (3), 171-176.
- Emamifar A, Kadivar M, Shahedi M, Soleimanian- Zad S. 2011. Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control, 22 (3-4), 408-413.
- Sun L, Rippon JA, Cookson PG, Koulaeva O, Wang X. 2009. Effects of undoped and manganese- doped zinc oxide nano particles on the colour fading of dyed polyester fabrics. Chem Eng J, 147(2-3), 391-398.
- Rostan EF, Debuys HV, Madey DL, Pinnell SR. 2002. Evidence supporting zinc as an important antioxidant for skin. Int J Dermatol, 41(9), 606-611. 39. Steele R. 2000. Understanding and measuring the shelf-life of food, Woodhead Publishing Limited, Cambridge, England, Pp:383.
- Coles R. 2003. Food Packaging Technology. Blackwell Pub. Ltd, London, Great Britain, Pp: 338. 41. Li, XH, Xing YG, Jiang YH, Ding YL, Li WL. 2009b. Antimicrobial activities of ZnO powder- coated PVC film to inactivate food pathogens. Int J Food Sci Technol, 44, 2161-2168.
- Jin T, Sun D, Su JY, Zhang H, Sue H. 2009. Antimicrobial efficacy of zinc oxide quantum dots against L. monocytogenes, S. enteritidis, and E. coliO157:H7. J Food Sci,74 (1), M46-M52.
- Emamifier A, Kadivar M, Shahedi M, Soleimanian- Zad S. 2010. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci Emerg Technol, 11 (4), 742-748.
- Li X, Li W, Jiang Y, Ding Y, Yun J, Tang Y, Zhang P. 2011. Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’ apple. Int J Food Sci Technol, 46, 1947–1955.
- Lepot N, Van Bael MK, Van Den Rul H, D’haen J, Peeters R, Franco D, Mullens J. 2011. Influence of Incorporation of ZnO Nanoparticles and Biaxial Orientation on Mechanical and Oxygen Barrier Properties of Polypropylene Films for Food Packaging Applications. J Appl Poly Sci, 120(3), 1616-1623.
- Han YS, Nie LH. 2004. The mechanism of protecting fresh and preparation of nano TiO2thin film. Journal of Zhuzhou Institute of Technology, 18, pp. 148-150
- Maneerat C, Hayata Y, Egashira N, Sakamoto K, Hamai Z, Kuroyanagi M. 2003. Photocatalytic reaction of TiO2to decompose ethylene in fruit and vegetable storage. ASABE, 46(3): 725-730.
- Maneerat C, Hayata Y. 2008. Photocatalytic gas_phase photocatalytic oxidation of ethylene with TiO2coated packaging film for horticulturel Products. ASABE, 51(1): 163-168.
- Jing Z, Guo D, Wang W, Zhang S, Qi W, Ling B. 2011. Comparative study of titania nanoparticles and nanotubes as antibacterial agents. Solid State Sci, 13 (9), 1797-1803.
- Kim B, Kim D, Cho D, Cho S. 2003. Bactericidal effect of TiO2photocatalyst on selected food- borne pathogenic bacteria. Chemosphere, 52 (1), 277-281. 50.
- Chawengkijwanich C, Hayata Y. 2008. Development of TiO2
- packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol, 123 (3), 288-292.
- Cheng Q, Li C, Pavlinek V, Saha P, Wang H. 2006. Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties. Appl Surf Sci, 252 (12) 4154-4160.
- Wu TS, Wang KX, Li GD, Sun SY, Sun J, Chen JS. 2010. Montmorillonite-Supported Ag/TiO2 Nanoparticles: An Efficient Visible-Light Bacteria Photodegradation Material. ACS Appl Mater Int, 2 (2), 544-550.
- Hu Q, Fang Y, Yang Y, Ma N, Zhao L. 2011. Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit (Actinidia deliciosa) during cold storage. Food Res Int, 44 (6), 1589-1596.
- Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q. 2009 Effect of nano-packing on preservation quality of Chinese Jujube (Ziziphus jujuba Mill. var. inermis (Bungu) Rehd). Food Chem, 114 (2), 547-552.
- Yang FM, Li HM, Li F, Xin ZH, Zhao LY, Zheng YH, Hu QH. 2010. Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4 degrees C. J Food Sci, 75 (3), C236-C240.