Research Article
BibTex RIS Cite

TAVUK STERNUMUNDAN ENZİMATİK HİDROLİZASYON İLE GLİKOZAMİNOGLİKAN (GAG) ÜRETİMİ VE İŞLEM PARAMETRELERİNİN OPTİMİZASYONU

Year 2022, Volume: 47 Issue: 4, 650 - 662, 30.08.2022
https://doi.org/10.15237/gida.GD22017

Abstract

Bu çalışmada tavuk sternumundan enzimatik hidrolizasyon yöntemiyle sülfatlanmış glikozaminoglikan (GAG) ekstraksiyonu gerçekleştirilmiş ve optimum enzimatik hidrolizasyon işlem koşulu belirlenmiştir. İşlem koşullarının optimizasyonu için Yanıt Yüzey Yöntemi kullanılmıştır. Enzim miktarı, pH değeri, ekstraksiyon sıcaklığı ve süresi olarak seçilen dört parametrenin GAG verimi üzerindeki etkilerini açıklamak için Merkezi Kompozit Tasarımıyla oluşturulan deneme deseni uygulanmıştır. En yüksek GAG verimine en kısa ekstraksiyon süresi ve en az enzim miktarı ile ulaşmak hedeflenmiştir. Ekstraksiyon işlemi için en uygun işlem koşulları %0.6 enzim miktarı, 6.99 pH değeri, 62.96°C ekstraksiyon sıcaklığı ve 10.79 saat ekstraksiyon süresi olarak bulunmuştur. Bu koşullarda, ekstraksiyon verim değerinin %26.07 olması öngörülmüş ve deneysel olarak da doğrulanması sağlanmıştır.

Supporting Institution

EGE ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNATÖRLÜĞÜ

Project Number

FYL-2020-22497 ve FBG-2020-21468

Thanks

Bu çalışma Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü [Proje No: FYL-2020-22497 ve FBG-2020-21468] tarafından desteklenmiştir.

References

  • Akram, A. N., Zhang, C. (2020). Extraction of collagen-II with pepsin and ultrasound treatment from chicken sternal cartilage; physicochemical and functional properties. Ultrasonics sonochemistry, 64(2020): 105053, doi: 10.1016/j.ultsonch.2020.105053.
  • Alexander, H., Brunski, J. B., Cooper, S. L., Hench, L. L., Hergenrother, R. W., Hoffman, A.S., Yannas, I. V. (1996). Classes of materials used in medicine. In Biomaterials Science, Academic Press, 37-130p.
  • Coulson-Thomas, Y. M., Coulson-Thomas, V. J., Norton, A. L., Gesteira, T. F., Cavalheiro, R.P., Meneghetti, M. C. Z., Nader, H. B. (2015). The identification of proteoglycans a nd glycosaminoglycans in archaeological human bones and teeth. PLoS ONE, 10(6): e0131105, doi: 10.1371/journal.pone.0131105.
  • Cui, Q., Li, G., Yuan, C. (2012). Optimization of glycosaminoglycan extraction on Patinopecten yessoensis waste. Procedia Environmental Sciences, 16 (2012): 131-137, doi: 10.1016/j.proenv.2012.10.018.
  • Farndale, R. W., Buttle, D. J., Barrett, A. J. (1986). Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochimica et Biophysica Acta (BBA)-General Subjects, 883(2): 173-177.
  • Garnjanagoonchorn, W., Wongekalak, L., Engkagul, A. (2007). Determination of chondroitin sulfate from different sources of cartilage. Chemical Engineering and Processing: Process Intensification, 46(5):465-471, doi: 10.1016/j.cep.2006.05.019.
  • Gilbert, M. E., Kirker, K. R., Gray, S. D., Ward, P. D., Szakacs, J. G., Prestwich, G. D., Orlandi, R. R. (2004). Chondroitin sulfate hydrogel and wound healing in rabbit maxillary sinus mucosa. The Laryngoscope, 114(8): 1406-1409, doi: 10.1097/00005537-200408000-00017.
  • He, G., Yin, Y., Yan, X., Yu, Q. (2014). Optimisation extraction of chondroitin sulfate from fish bone by high intensity pulsed electric fields. Food Chemistry, 164 (2014): 205-210, doi: 10.1016/j.foodchem.2014.05.032.
  • Horkay, F. (2012). Interactions of cartilage extracellular matrix macromolecules. Journal of Polymer Science Part B: Polymer Physics, 50(24): 1699-1705, doi: 10.1002/polb.23191.
  • Kozakçioglu, M. (2009). Osteoartrit ve Glukozamin/Osteoarthritis and Glucosamine. Turkish Journal of Rheumatology, 24(2):94.
  • Köksel, H. (2017). Karbonhidratlar. Gıda Kimyası, Saldamlı, İ. (baş ed.), Hacettepe Üniversitesi Yayınları, Ankara, Türkiye, s. 124-127.
  • Lazic, Z. R. (2004). Design of Experiment in Chemical Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 1-152p. ISBN: 978-3-527-31142-2.
  • Le Vien, N. T., Nguyen, P. B., Cuong, L. D., An, T. T. T., Dao, D. T. A., (2017). Optimization of papain hydrolysis conditions for release of glycosaminoglycans from the chicken keel cartilage. AIP Conference Proceedings 1878(1), September 2017, doi: 10.1063/1.5000177.
  • Leong, W. C., Abdullah, M. Z., Khor, C. Y., (2013). Optimization of flexible printed circuit board electronics in the flow environment using response surface methodology. Microelectronics Reliability, 53(2013): 1996-2004, doi: 10.1016/j.microrel.2013.06.008.
  • Lohmander, L. S., De Luca, S., Nilsson, B., Hascall, V. C., Caputo, C. B., Kimura, J. H., Heinegard, D. (1980). Oligosaccharides on proteoglycans from the swarm rat chondrosarcoma. Journal of Biological Chemistry, 255(13): 6084-6091, doi: 10.1016/S0021-9258(18)43704-0.
  • Luo, X. M., Fosmire, G. J., Leach Jr, R. M. (2002). Chicken keel cartilage as a source of chondroitin sulfate. Poultry Science, 81(7): 1086-1089, doi: 10.1093/ps/81.7.1086.
  • Martone, C. B., Borla, O. P., Sánchez, J. J. (2005). Fishery by-product as a nutrient source for bacteria and archaea growth media. Bioresource technology, 96(3): 383-387, doi: 10.1016/j.biortech.2004.04.008.
  • Myers, R. H., Montgomery, D. C. (1995). Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons, New York, USA, 156-179p. ISBN:978-1-118-91601-8.
  • Ötleş, S., Özdestan Ocak, Ö., Nakilcioğlu Taş, E., Kartal, C., Özyurt, H. (2015). Gıda Kimyası. Ege Üniversitesi Yayınları, İzmir, Türkiye, 115-116s. Scharnweber, D., Hübner, L., Rother, S., Hempel, U., Anderegg, U., Samsonov, S. A., Pisabarro, M. T., Hofbauer, L., Schnabelrauch, M., Franz, S., Simon J., Hintze, V. (2015).
  • Glycosaminoglycan derivatives: promising candidates for the design of functional biomaterials. Journal of Materials Science: Materials in Medicine, 26(9):1-10, doi: 10.1007/s10856-015-5563-7.
  • Shi, Y. G., Meng, Y. C., Li, J. R., Chen, J., Liu, Y. H., Bai, X. (2014). Chondroitin sulfate: Extraction, purification, microbial and chemical synthesis. Journal of Chemical Technology & Biotechnology, 89(10): 1445-1465, doi: 10.1002/jctb.4454.
  • Srichamroen, A., Nakano, T., Pietrasik, Z., Ozimek, L., Betti, M. (2013). Chondroitin sulfate extraction from broiler chicken cartilage by tissue autolysis. LWT-Food Science and Technology, 50(2): 607-612, doi: 10.1016/j.lwt.2012.07.039.
  • Theocharis, A. D., Tsolakis, I., Tzanakakis, G. N., Karamanos, N. K. (2006). Chondroitin sulfate as a key molecule in the development of atherosclerosis and cancer progression. Advances in pharmacology, 53: 281-295, doi: 10.1016/S1054-3589(05)53013-8.
  • Uslu, M. Ö. ve Eltas, Ş. D., (2015). Peridontal Hastalıklarda MMP-8 ‘in Rolü. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 25: 80-85, doi:10.17567/dfd.75960.
  • Vázquez, J. A., Blanco, M., Fraguas, J., Pastrana, L., Pérez-Martín, R. (2016). Optimisation of the extraction and purification of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes. Food Chemistry, 198(2016): 28-35, doi: 10.1016/j.foodchem.2015.10.087.
  • Vázquez, J. A., Rodríguez-Amado, I., Montemayor, M. I., Fraguas, J., González, M. D. P., Murado, M. A. (2013). Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: Characteristics, applications and eco-friendly processes: A review. Marine drugs, 11(3), 747-774, doi: 10.3390/md11030747.
  • Volpi, N. (2009). Quality of different chondroitin sulfate preparations in relation to their therapeutic activity. Journal of pharmacy and pharmacology, 61(10): 1271-1280, doi: 10.1211/jpp.61.10.0002.
  • Wang, X., Shen, Q., Zhang, C., Jia, W., Han, L., Yu, Q. (2019). Chicken leg bone as a source of chondroitin sulfate. Carbohydrate polymers, 207 (2019): 191-199, doi: 10.1016/j.carbpol.2018.11.086.
  • Widyaningsih, T. D., Rukmi, W. D., Sofia, E., Wijayanti, S. D., Wijayanti, N., Ersalia, R., Nangin, D. (2017). Extraction of glycosaminoglycans containing glucosamine and chondroitin sulfate from chicken claw cartilage. Research Journal of Life Science, 3(3): 181-189, doi: 10.21776/ub.rjls.2016.003.03.7.

PRODUCTION OF GLYCOSAMINOGLYCAN (GAG) FROM CHICKEN STERNUM BY ENZYMATIC HYDROLYSIS AND OPTIMIZATION OF PROCESS PARAMETERS

Year 2022, Volume: 47 Issue: 4, 650 - 662, 30.08.2022
https://doi.org/10.15237/gida.GD22017

Abstract

In this study, sulfated glycosaminoglycan (GAG) extraction was performed from chicken sternum by enzymatic hydrolysis method and optimum enzymatic hydrolysis process conditions were determined. Response Surface Method was used for the optimization of the process conditions. In order to determine the effects of the selected four parameters as enzyme amount, pH value, extraction temperature and time on GAG yield, a trial design created with Central Composite Design was applied. It is aimed to reach the highest GAG efficiency in the shortest time and by using the least amount of enzyme. The most suitable process conditions for the extraction process were found to be 0.6% enzyme amount, 6.99 pH value, 62.96°C extraction temperature and 10.79 hours extraction time. Under these conditions, the extraction yield value was predicted to be 26.07% and it was confirmed experimentally.

Project Number

FYL-2020-22497 ve FBG-2020-21468

References

  • Akram, A. N., Zhang, C. (2020). Extraction of collagen-II with pepsin and ultrasound treatment from chicken sternal cartilage; physicochemical and functional properties. Ultrasonics sonochemistry, 64(2020): 105053, doi: 10.1016/j.ultsonch.2020.105053.
  • Alexander, H., Brunski, J. B., Cooper, S. L., Hench, L. L., Hergenrother, R. W., Hoffman, A.S., Yannas, I. V. (1996). Classes of materials used in medicine. In Biomaterials Science, Academic Press, 37-130p.
  • Coulson-Thomas, Y. M., Coulson-Thomas, V. J., Norton, A. L., Gesteira, T. F., Cavalheiro, R.P., Meneghetti, M. C. Z., Nader, H. B. (2015). The identification of proteoglycans a nd glycosaminoglycans in archaeological human bones and teeth. PLoS ONE, 10(6): e0131105, doi: 10.1371/journal.pone.0131105.
  • Cui, Q., Li, G., Yuan, C. (2012). Optimization of glycosaminoglycan extraction on Patinopecten yessoensis waste. Procedia Environmental Sciences, 16 (2012): 131-137, doi: 10.1016/j.proenv.2012.10.018.
  • Farndale, R. W., Buttle, D. J., Barrett, A. J. (1986). Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochimica et Biophysica Acta (BBA)-General Subjects, 883(2): 173-177.
  • Garnjanagoonchorn, W., Wongekalak, L., Engkagul, A. (2007). Determination of chondroitin sulfate from different sources of cartilage. Chemical Engineering and Processing: Process Intensification, 46(5):465-471, doi: 10.1016/j.cep.2006.05.019.
  • Gilbert, M. E., Kirker, K. R., Gray, S. D., Ward, P. D., Szakacs, J. G., Prestwich, G. D., Orlandi, R. R. (2004). Chondroitin sulfate hydrogel and wound healing in rabbit maxillary sinus mucosa. The Laryngoscope, 114(8): 1406-1409, doi: 10.1097/00005537-200408000-00017.
  • He, G., Yin, Y., Yan, X., Yu, Q. (2014). Optimisation extraction of chondroitin sulfate from fish bone by high intensity pulsed electric fields. Food Chemistry, 164 (2014): 205-210, doi: 10.1016/j.foodchem.2014.05.032.
  • Horkay, F. (2012). Interactions of cartilage extracellular matrix macromolecules. Journal of Polymer Science Part B: Polymer Physics, 50(24): 1699-1705, doi: 10.1002/polb.23191.
  • Kozakçioglu, M. (2009). Osteoartrit ve Glukozamin/Osteoarthritis and Glucosamine. Turkish Journal of Rheumatology, 24(2):94.
  • Köksel, H. (2017). Karbonhidratlar. Gıda Kimyası, Saldamlı, İ. (baş ed.), Hacettepe Üniversitesi Yayınları, Ankara, Türkiye, s. 124-127.
  • Lazic, Z. R. (2004). Design of Experiment in Chemical Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 1-152p. ISBN: 978-3-527-31142-2.
  • Le Vien, N. T., Nguyen, P. B., Cuong, L. D., An, T. T. T., Dao, D. T. A., (2017). Optimization of papain hydrolysis conditions for release of glycosaminoglycans from the chicken keel cartilage. AIP Conference Proceedings 1878(1), September 2017, doi: 10.1063/1.5000177.
  • Leong, W. C., Abdullah, M. Z., Khor, C. Y., (2013). Optimization of flexible printed circuit board electronics in the flow environment using response surface methodology. Microelectronics Reliability, 53(2013): 1996-2004, doi: 10.1016/j.microrel.2013.06.008.
  • Lohmander, L. S., De Luca, S., Nilsson, B., Hascall, V. C., Caputo, C. B., Kimura, J. H., Heinegard, D. (1980). Oligosaccharides on proteoglycans from the swarm rat chondrosarcoma. Journal of Biological Chemistry, 255(13): 6084-6091, doi: 10.1016/S0021-9258(18)43704-0.
  • Luo, X. M., Fosmire, G. J., Leach Jr, R. M. (2002). Chicken keel cartilage as a source of chondroitin sulfate. Poultry Science, 81(7): 1086-1089, doi: 10.1093/ps/81.7.1086.
  • Martone, C. B., Borla, O. P., Sánchez, J. J. (2005). Fishery by-product as a nutrient source for bacteria and archaea growth media. Bioresource technology, 96(3): 383-387, doi: 10.1016/j.biortech.2004.04.008.
  • Myers, R. H., Montgomery, D. C. (1995). Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons, New York, USA, 156-179p. ISBN:978-1-118-91601-8.
  • Ötleş, S., Özdestan Ocak, Ö., Nakilcioğlu Taş, E., Kartal, C., Özyurt, H. (2015). Gıda Kimyası. Ege Üniversitesi Yayınları, İzmir, Türkiye, 115-116s. Scharnweber, D., Hübner, L., Rother, S., Hempel, U., Anderegg, U., Samsonov, S. A., Pisabarro, M. T., Hofbauer, L., Schnabelrauch, M., Franz, S., Simon J., Hintze, V. (2015).
  • Glycosaminoglycan derivatives: promising candidates for the design of functional biomaterials. Journal of Materials Science: Materials in Medicine, 26(9):1-10, doi: 10.1007/s10856-015-5563-7.
  • Shi, Y. G., Meng, Y. C., Li, J. R., Chen, J., Liu, Y. H., Bai, X. (2014). Chondroitin sulfate: Extraction, purification, microbial and chemical synthesis. Journal of Chemical Technology & Biotechnology, 89(10): 1445-1465, doi: 10.1002/jctb.4454.
  • Srichamroen, A., Nakano, T., Pietrasik, Z., Ozimek, L., Betti, M. (2013). Chondroitin sulfate extraction from broiler chicken cartilage by tissue autolysis. LWT-Food Science and Technology, 50(2): 607-612, doi: 10.1016/j.lwt.2012.07.039.
  • Theocharis, A. D., Tsolakis, I., Tzanakakis, G. N., Karamanos, N. K. (2006). Chondroitin sulfate as a key molecule in the development of atherosclerosis and cancer progression. Advances in pharmacology, 53: 281-295, doi: 10.1016/S1054-3589(05)53013-8.
  • Uslu, M. Ö. ve Eltas, Ş. D., (2015). Peridontal Hastalıklarda MMP-8 ‘in Rolü. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 25: 80-85, doi:10.17567/dfd.75960.
  • Vázquez, J. A., Blanco, M., Fraguas, J., Pastrana, L., Pérez-Martín, R. (2016). Optimisation of the extraction and purification of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes. Food Chemistry, 198(2016): 28-35, doi: 10.1016/j.foodchem.2015.10.087.
  • Vázquez, J. A., Rodríguez-Amado, I., Montemayor, M. I., Fraguas, J., González, M. D. P., Murado, M. A. (2013). Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: Characteristics, applications and eco-friendly processes: A review. Marine drugs, 11(3), 747-774, doi: 10.3390/md11030747.
  • Volpi, N. (2009). Quality of different chondroitin sulfate preparations in relation to their therapeutic activity. Journal of pharmacy and pharmacology, 61(10): 1271-1280, doi: 10.1211/jpp.61.10.0002.
  • Wang, X., Shen, Q., Zhang, C., Jia, W., Han, L., Yu, Q. (2019). Chicken leg bone as a source of chondroitin sulfate. Carbohydrate polymers, 207 (2019): 191-199, doi: 10.1016/j.carbpol.2018.11.086.
  • Widyaningsih, T. D., Rukmi, W. D., Sofia, E., Wijayanti, S. D., Wijayanti, N., Ersalia, R., Nangin, D. (2017). Extraction of glycosaminoglycans containing glucosamine and chondroitin sulfate from chicken claw cartilage. Research Journal of Life Science, 3(3): 181-189, doi: 10.21776/ub.rjls.2016.003.03.7.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Çise Karaman 0000-0002-6733-3796

Seher Kumcuoğlu 0000-0002-3663-2881

Sibel Kaya Bayram 0000-0001-9273-9854

Şebnem Tavman 0000-0002-6042-7482

Project Number FYL-2020-22497 ve FBG-2020-21468
Publication Date August 30, 2022
Published in Issue Year 2022 Volume: 47 Issue: 4

Cite

APA Karaman, Ç., Kumcuoğlu, S., Kaya Bayram, S., Tavman, Ş. (2022). TAVUK STERNUMUNDAN ENZİMATİK HİDROLİZASYON İLE GLİKOZAMİNOGLİKAN (GAG) ÜRETİMİ VE İŞLEM PARAMETRELERİNİN OPTİMİZASYONU. Gıda, 47(4), 650-662. https://doi.org/10.15237/gida.GD22017
AMA Karaman Ç, Kumcuoğlu S, Kaya Bayram S, Tavman Ş. TAVUK STERNUMUNDAN ENZİMATİK HİDROLİZASYON İLE GLİKOZAMİNOGLİKAN (GAG) ÜRETİMİ VE İŞLEM PARAMETRELERİNİN OPTİMİZASYONU. The Journal of Food. August 2022;47(4):650-662. doi:10.15237/gida.GD22017
Chicago Karaman, Çise, Seher Kumcuoğlu, Sibel Kaya Bayram, and Şebnem Tavman. “TAVUK STERNUMUNDAN ENZİMATİK HİDROLİZASYON İLE GLİKOZAMİNOGLİKAN (GAG) ÜRETİMİ VE İŞLEM PARAMETRELERİNİN OPTİMİZASYONU”. Gıda 47, no. 4 (August 2022): 650-62. https://doi.org/10.15237/gida.GD22017.
EndNote Karaman Ç, Kumcuoğlu S, Kaya Bayram S, Tavman Ş (August 1, 2022) TAVUK STERNUMUNDAN ENZİMATİK HİDROLİZASYON İLE GLİKOZAMİNOGLİKAN (GAG) ÜRETİMİ VE İŞLEM PARAMETRELERİNİN OPTİMİZASYONU. Gıda 47 4 650–662.
IEEE Ç. Karaman, S. Kumcuoğlu, S. Kaya Bayram, and Ş. Tavman, “TAVUK STERNUMUNDAN ENZİMATİK HİDROLİZASYON İLE GLİKOZAMİNOGLİKAN (GAG) ÜRETİMİ VE İŞLEM PARAMETRELERİNİN OPTİMİZASYONU”, The Journal of Food, vol. 47, no. 4, pp. 650–662, 2022, doi: 10.15237/gida.GD22017.
ISNAD Karaman, Çise et al. “TAVUK STERNUMUNDAN ENZİMATİK HİDROLİZASYON İLE GLİKOZAMİNOGLİKAN (GAG) ÜRETİMİ VE İŞLEM PARAMETRELERİNİN OPTİMİZASYONU”. Gıda 47/4 (August 2022), 650-662. https://doi.org/10.15237/gida.GD22017.
JAMA Karaman Ç, Kumcuoğlu S, Kaya Bayram S, Tavman Ş. TAVUK STERNUMUNDAN ENZİMATİK HİDROLİZASYON İLE GLİKOZAMİNOGLİKAN (GAG) ÜRETİMİ VE İŞLEM PARAMETRELERİNİN OPTİMİZASYONU. The Journal of Food. 2022;47:650–662.
MLA Karaman, Çise et al. “TAVUK STERNUMUNDAN ENZİMATİK HİDROLİZASYON İLE GLİKOZAMİNOGLİKAN (GAG) ÜRETİMİ VE İŞLEM PARAMETRELERİNİN OPTİMİZASYONU”. Gıda, vol. 47, no. 4, 2022, pp. 650-62, doi:10.15237/gida.GD22017.
Vancouver Karaman Ç, Kumcuoğlu S, Kaya Bayram S, Tavman Ş. TAVUK STERNUMUNDAN ENZİMATİK HİDROLİZASYON İLE GLİKOZAMİNOGLİKAN (GAG) ÜRETİMİ VE İŞLEM PARAMETRELERİNİN OPTİMİZASYONU. The Journal of Food. 2022;47(4):650-62.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/