Research Article
BibTex RIS Cite

ULTRASON UYGULAMASININ YOĞURT BENZERİ FERMENTE SÜT ÜRÜNÜNDE FARKLI PROBİYOTİK LAKTOBASİL TÜRLERİNİN CANLILIĞI ÜZERİNE ETKİSİ

Year 2023, Volume: 48 Issue: 1, 107 - 117, 15.02.2023
https://doi.org/10.15237/gida.GD22100

Abstract

Bu çalışmada ultrason uygulamasının farklı probiyotik laktobasil (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus GG) türlerinin canlılığına etkisini incelenmiştir. Ayrıca, ultrason uygulamasının fermentasyon süresine etkisi de saptanmıştır. Bu amaçla süte önce 15 dk süreyle 400 W ultrason uygulanmış ve kültür ilavesi sonrasında da 5 dk süreyle 100 W ultrason uygulanarak fermentasyon süresi belirlenmiş ve elde edilen yoğurt benzeri probiyotik fermente süt ürününde probiyotik bakteri sayımı gerçekleştirilmiştir. Yapılan incelemeler sonucunda ultrason uygulamasının L. acidophilus ve L. casei ile aşılanan örneklerde fermentasyon süresini kısalttığı ve L. acidophilus, L. casei ve L. rhamnosus GG probiyotik bakterilerinin canlılığını arttırdığı saptanmıştır. Bu sonuçlar, ultrason uygulamasının süt teknolojisinde gelecek vaat ettiğini ve probiyotik fermente süt ürünleri üretiminde kullanılma potansiyeli olduğunu göstermektedir.

References

  • Abesinghe, A.M.N.L, Islam, N., Vidanarachchi, J.K., Prakash, S., Silva, K.F.S.T., Karim, M.A. (2019). Effects of ultrasound on the fermentation profile of fermented milk products incorporated with lactic acid bacteria, International Dairy Journal, 90: 1-14. doi:10.1016/j.idairyj.2018.10.006.
  • Akalın, A.S., Erisir, D. (2008). Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low-fat probiotic ice cream. Journal of Food Science, 73(4): 184–188, doi: 10.1111/j.1750-3841.2008.00728.x.
  • Akdeniz, V., Akalın, A.S. (2017). Ultrason uygulamasının süt ürünlerinde homojenizasyon, jel yapısı, viskozite ve su tutma kapasitesi üzerine etkisi, GIDA, 42(6): 743-53, doi:10.15237/gida.GD17062.
  • Akdeniz, V., Akalın, A.S. (2022). Power ultrasound affect on physicochemical, rheological and sensory characteristics of probiotic yoghurts. International Dairy Journal, In press, doi:10.1016/j.idairyj.2022.105530.
  • Anonim (2006). Türk Gıda Kodeksi Çiğ Süt ve Isıl İşlem Görmüş İçme Sütleri Tebliğinde Değişiklik Yapılması Hakkında Tebliğ, No: 2006/38, Ankara.
  • AOAC (2000). Official Methods of Analysis AOAC INTERNATIONAL. 17th Edition, Washington DC, USA.
  • AOAC (2002). Official Methods of Analysis AOAC INTERNATIONAL. Fat content of raw and pasteurized whole milk: method 2000.18, 33.2.27A, Gaithersburg, USA.
  • Arzeni, C., Martinez, K., Zema, P., Arias, A., Perez, O.E., Pilosof, A.M.R. (2012). Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering, 108: 463–472. doi:10.1016/j.jfoodeng.2011.08.018.
  • Ashokkumar, M. (2015). Applications of ultrasound in food and bioprocessing. Ultrasonics Sonochemistry, 25: 17–23. doi:10.1016/j.ultsonch.2014.08.012.
  • Bakr, S.A. (2015). The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage. Biocatalysis and Agricultural Biotechnology, 4: 423–431. doi:10.1016/j.bcab.2015.09.010.
  • Dahroud, B.D., Mokarram, R.R., Khiabani, M.S., Hamishehkar, E., Bialvaei, A.Z., Yousefi, M., Kafil, H.S. (2016). Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp. casei ATTC 39392, International Journal of Biological Macromolecules, 86: 462-67. doi:10.1016/j.ijbiomac.2016.01.103.
  • Dave, R.I., Shah, N.P. (1998). Ingredient supplementation effects on viability of probiotic bacteria in yogurt, Journal of Dairy Science, 81: 2804-2816.
  • Dinkci, N., Akdeniz, V., Akalın, A.S. (2019). Survival of probiotics in functional foods during shelf life. In Food Quality and Shelf Life, 1st ed., Galanakis, C.M. (Ed.), Academic Press: Cambridge, MA, USA, pp. 201–226.
  • Erkaya, T., Baslar, M., Sengül, M., Ertugay, M.F. (2015). Effect of thermosonication on physicochemical, microbiological and sensorial characteristics of ayran during storage, Ultrasonics Sonochemistry, 23: 406-412. doi:10.1016/j.ultsonch.2014.08.009.
  • Ewe, J., Abdullah, W.W., Bhat, R., Karim, A., Liong, M., (2012). Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin-supplemented soymilk upon ultrasound-treatment, Ultrasonics Sonochemistry, 19: 160-173, doi:10.1016/j.ultsonch.2012.01.003.
  • Foysal, M.J., Fotedar, R., Siddik, M.A.B., Tay, A. (2020). Lactobacillus acidophilus and L. plantarum improve health status, modulate gut microbiota and innate immune response of marron (Cherax cainii). Scientific Reports, 10:5916, doi:10.1038/s41598-020-62655-y.
  • Goldin, B. R., Gorbach, S. L., Saxelin, M., Barakat, S., Gualticri, L., Salminen, S. (1992). Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Digestive Diseases and Sciences, 37:121–128.
  • Guimaraes, J.T., Silva, E.K., Ranadheera, C.S., Moraes, J., Raices, R.S.L., Silva, M.C., Ferreira, M.S., Freitas, M.Q., Meireles, M.A.A., Cruz, A.G. (2019). Effect of high-intensity ultrasound on the nutritional profile and volatile compounds of a prebiotic soursop whey beverage, Ultrasonics Sonochemistry, 55: 157–164. doi:10.1016/j.ultsonch.2019.05.004.
  • Gursoy, O., Yılmaz, Y., Gokce, O., Ertan, K. (2016). Effect of ultrasound power on physicochemical and rheological properties of yoghurt drink produced with thermosonicated milk, Emirates Journal of Food and Agriculture, 28(4): 235-241. doi:10.9755/ejfa.2015-09-719.
  • Higuera-Barraza, O.A., Del Toro-Sanchez, C.L., Ruiz-Cruz, S., Márquez-Ríos, E. (2016). Effects of high-energy ultrasound on the functional properties of proteins. Ultrasonics Sonochemistry, 31: 558–562. doi:10.1016/j.ultsonch.2016.02.007.
  • Jia, R., H. Chen, H. Chen, W. Ding. (2016). Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt. Journal of Dairy Science, 99:221–227, doi:10.3168/jds.2015-10114.
  • Kneifel, W., Bonaparte, C. (2003). Acidophilus milk. In Encyclopedia of food sciences and nutrition, Caballero, B. (Ed.), Elsevier Applied Sciences Publ., UK, pp. 3-7.
  • Knorr, D., Zenker, M., Heinz, V., Lee, D.U. (2004). Applications and potential of ultrasonics in food processing, Trends in Food Science and Technology, 15: 261–266, doi:10.1016/j.tifs.2003.12.001
  • Kopeloff, N., Cheney, C. (1922). Studies on the therapeutic effect of Bacillus Acidophilus and lactose. JAMA, 79(8): 609–611, doi:10.1001/jama.1922.02640080011004.
  • Kreft, M.E., Jelen, P. (2000). Stability and Activity of β-Galactosidase in Sonicated Cultures of Lactobacillus delbrueckii ssp. bulgaricus 11842 as Affected by Temperature and Ionic Environments, Journal of Food Science, 65(8): 1364-1368.
  • Lacroix, C., Yildirim, S. (2007). Fermentation technologies for the production of probiotics with high viability and functionality. Current Opinion in Biotechnology, 18:176–183, doi:10.1016/j.copbio.2007.02.002.
  • Lentacker, I., De Cock, I., Deckers, R., De Smedt, S., Moonen, C. (2014). Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms, Advanced Drug Delivery Reviews, 72: 49-64, doi:10.1016/j.addr.2013.11.008.
  • Matsuzaki, T., Takagi, A., Ikemura, H., Matsuguchi, T., Yokokura, T. (2007). Intestinal microflora: probiotics and autoimmunity. The Journal of Nutrition, 137(3): 798-802, doi:10.1093/jn/137.3.798S.
  • Mohammadi, V., Ghasemi-Varnamkhasti, M., Ebrahimi, R., Abbasvali, M. (2014). Ultrasonic techniques for the milk production industry, Measurement, 58: 93–102, doi:10.1016/j.measurement.2014.08.022
  • Mortazavi, A., Tabatabaie, F. (2008). Study of ice cream freezing process after treatment with ultrasound, World Applied Sciences Journal, 4(2): 188–190.
  • Nguyen H.T, Truong, D.H., Kouhounde, S., Ly, S., Razafindralambo, H., Delvigne, F. (2016). Biochemical Engineering Approaches for Increasing Viability and Functionality of Probiotic Bacteria. International Journal of Moluculer Sciences, 17:867, doi:10.3390/ijms17060867
  • Nguyen, T.M.P., Lee, Y.K., Zhou, W. (2009). Stimulating fermentative activities of bifidobacteria in milk by high intensity ultrasound, International Dairy Journal, 19: 410–416, doi:10.1016/j.idairyj.2009.02.004.
  • Nguyen, T.M.P., Lee, Y.K., Zhou, W. (2012). Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation, Food Chemistry, 130: 866-74, doi:10.1016/j.foodchem.2011.07.108
  • Niamah, A.K. (2019). Ultrasound treatment (low frequency) effects on probiotic bacteria growth in fermented milk. Future of Food: Journal on Food, Agriculture and Society Article Number 103, doi:10.17170/kobra-20190709592.
  • Pitt, W.G., Ross, S.A. (2003). Ultrasound Increases the Rate of Bacterial Cell Growth, Biotechnology Progress, 19: 1038-1044.
  • Potoroko I., Kalinina, I., Botvinnikova, V., Krasulya, O., Fatkullin, R., Bagale, U., Sonawanw, S.H. (2018). Ultrasound effects based on simulation of milk processing properties, Ultrasonics Sonochemistry, 48: 463-472. doi:10.1016/j.ultsonch.2018.06.019.
  • Riener, J., Noci, F., Cronin, D.A., Morgan, D.J., Lyng, J.G. (2009). The effect of thermosonication of milk on selected physicochemical and microstructural properties of yogurt gels during fermentation. Food Chemistry, 114: 905–911, doi:10.1016/j.foodchem.2008.10.037.
  • Ryan, J., Hutchings, S.C., Fang, Z., Bandara, N., Gamlath, S., Ajlouni, S., Ranadheera, C.S. (2020). Microbial, physico-chemical and sensory characteristics of mango juice-enriched probiotic dairy drinks. International Journal of Dairy Technology, 73(1): 182-190, doi: 10.1111/1471-0307.12630.
  • Sarkar, S. (2010). Approaches for enhancing the viability of probiotics: a review. British Food Journal, 112: 329–342, doi:10.1108/00070701011034376.
  • Shimada, T., Ohdaira, E., Masuzawa, N. (2004). Effect of ultrasonic frequency on lactic acid fermentation promotion by ultrasonic irradiation. Japanese Journal of Applied Physics, 43(5S): 2831. doi:10.1143/JJAP.43.2831.
  • Shori, A.B. (2016). Influence of food matrix on the viability of probiotic bacteria: An overview based on dairy and non-dairy beverages. Food Bioscience, 13(1): 1–8. doi: 10.1016/j.fbio.2015.11.001.
  • Sömer, V.F., Akpınar, D., Başyiğit Kılıç, G. (2012). Lactobacillus casei’nin sağlık üzerine etkileri ve gıda endüstrisinde kullanımı. GIDA, 37(3): 165-172.
  • Srinivasan R., Meyer, R. (2006). Clinical safety of Lactobacillus casei strain shirota as a probiotic in critically ill children. Journal of Pediatric Gastroenterology and Nutrition, 42(2): 171-173, doi:10.1097/01.mpg.0000189335.62397.cf.
  • Sun, J., Chen, H., Qiao, Y., Liu, G., Leng, C., Zhang, Y. Lv, X., Feng, Z. (2019). The nutrient requirements of Lactobacillus rhamnosus GG and their application to fermented milk. Journal of Dairy Science, 102: 5971-5978, doi:10.3168/jds.2018-15834.
  • Tharmaraj, N., Shah, N.P. (2003). Selective Enumeration of Lactobacillus delbrueckii subsp. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus and Propionibacteria. Journal of Dairy Science, 86: 2288-2296, doi:10.3168/jds.S0022-0302(03)73821-1.
  • Wendakoon, C.N., Nakano, T., Remillard, S.C., Ozimek, L. (2007). Antimutagenic activity of Lactobacillus casei ADA 03 and its cell wall components. Milchwissenschaft, 62(3): 320-323.
  • Wu, H., Hulbert, G.J., Mount, J.R. (2001). Effects of ultrasound on milk homogenization and fermentation with yoghurt starter, Innovative Food Science and Emerging Technologies, 1(3): 211–218.
  • Wu, H., Nyborg, W.L. (2008). Ultrasound, cavitation bubbles and their interaction with cells, Advanced Drug Delivery Reviews, 60:1103–116.

EFFECT OF ULTRASOUND APPLICATION ON VIABILITY OF DIFFERENT PROBIOTIC LACTOBACILLUS SPECIES IN YOGURT-LIKE FERMENTED DAIRY PRODUCT

Year 2023, Volume: 48 Issue: 1, 107 - 117, 15.02.2023
https://doi.org/10.15237/gida.GD22100

Abstract

n this study, the effect of ultrasound on the viability of different probiotic lactobacilli species (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus GG) was investigated. In addition, the effect of ultrasound application on the fermentation time was determined. For this purpose, first 400 W ultrasound was applied to the milk for 15 minutes, and after the culture addition, 100 W ultrasound was applied for 5 minutes, then the fermentation time was determined, and the probiotic bacteria count was performed in the yogurt-like probiotic fermented milk product obtained. As a result of the study, it was determined that the application of ultrasound shortened the fermentation time in the samples inoculated with L. acidophilus and L. casei, and increased the viability of L. acidophilus, L. casei and L. rhamnosus GG probiotic bacteria. These results show that the ultrasound application is promising in dairy technology and has the potential to be used in the production of probiotic fermented milk products.

References

  • Abesinghe, A.M.N.L, Islam, N., Vidanarachchi, J.K., Prakash, S., Silva, K.F.S.T., Karim, M.A. (2019). Effects of ultrasound on the fermentation profile of fermented milk products incorporated with lactic acid bacteria, International Dairy Journal, 90: 1-14. doi:10.1016/j.idairyj.2018.10.006.
  • Akalın, A.S., Erisir, D. (2008). Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low-fat probiotic ice cream. Journal of Food Science, 73(4): 184–188, doi: 10.1111/j.1750-3841.2008.00728.x.
  • Akdeniz, V., Akalın, A.S. (2017). Ultrason uygulamasının süt ürünlerinde homojenizasyon, jel yapısı, viskozite ve su tutma kapasitesi üzerine etkisi, GIDA, 42(6): 743-53, doi:10.15237/gida.GD17062.
  • Akdeniz, V., Akalın, A.S. (2022). Power ultrasound affect on physicochemical, rheological and sensory characteristics of probiotic yoghurts. International Dairy Journal, In press, doi:10.1016/j.idairyj.2022.105530.
  • Anonim (2006). Türk Gıda Kodeksi Çiğ Süt ve Isıl İşlem Görmüş İçme Sütleri Tebliğinde Değişiklik Yapılması Hakkında Tebliğ, No: 2006/38, Ankara.
  • AOAC (2000). Official Methods of Analysis AOAC INTERNATIONAL. 17th Edition, Washington DC, USA.
  • AOAC (2002). Official Methods of Analysis AOAC INTERNATIONAL. Fat content of raw and pasteurized whole milk: method 2000.18, 33.2.27A, Gaithersburg, USA.
  • Arzeni, C., Martinez, K., Zema, P., Arias, A., Perez, O.E., Pilosof, A.M.R. (2012). Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering, 108: 463–472. doi:10.1016/j.jfoodeng.2011.08.018.
  • Ashokkumar, M. (2015). Applications of ultrasound in food and bioprocessing. Ultrasonics Sonochemistry, 25: 17–23. doi:10.1016/j.ultsonch.2014.08.012.
  • Bakr, S.A. (2015). The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage. Biocatalysis and Agricultural Biotechnology, 4: 423–431. doi:10.1016/j.bcab.2015.09.010.
  • Dahroud, B.D., Mokarram, R.R., Khiabani, M.S., Hamishehkar, E., Bialvaei, A.Z., Yousefi, M., Kafil, H.S. (2016). Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp. casei ATTC 39392, International Journal of Biological Macromolecules, 86: 462-67. doi:10.1016/j.ijbiomac.2016.01.103.
  • Dave, R.I., Shah, N.P. (1998). Ingredient supplementation effects on viability of probiotic bacteria in yogurt, Journal of Dairy Science, 81: 2804-2816.
  • Dinkci, N., Akdeniz, V., Akalın, A.S. (2019). Survival of probiotics in functional foods during shelf life. In Food Quality and Shelf Life, 1st ed., Galanakis, C.M. (Ed.), Academic Press: Cambridge, MA, USA, pp. 201–226.
  • Erkaya, T., Baslar, M., Sengül, M., Ertugay, M.F. (2015). Effect of thermosonication on physicochemical, microbiological and sensorial characteristics of ayran during storage, Ultrasonics Sonochemistry, 23: 406-412. doi:10.1016/j.ultsonch.2014.08.009.
  • Ewe, J., Abdullah, W.W., Bhat, R., Karim, A., Liong, M., (2012). Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin-supplemented soymilk upon ultrasound-treatment, Ultrasonics Sonochemistry, 19: 160-173, doi:10.1016/j.ultsonch.2012.01.003.
  • Foysal, M.J., Fotedar, R., Siddik, M.A.B., Tay, A. (2020). Lactobacillus acidophilus and L. plantarum improve health status, modulate gut microbiota and innate immune response of marron (Cherax cainii). Scientific Reports, 10:5916, doi:10.1038/s41598-020-62655-y.
  • Goldin, B. R., Gorbach, S. L., Saxelin, M., Barakat, S., Gualticri, L., Salminen, S. (1992). Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Digestive Diseases and Sciences, 37:121–128.
  • Guimaraes, J.T., Silva, E.K., Ranadheera, C.S., Moraes, J., Raices, R.S.L., Silva, M.C., Ferreira, M.S., Freitas, M.Q., Meireles, M.A.A., Cruz, A.G. (2019). Effect of high-intensity ultrasound on the nutritional profile and volatile compounds of a prebiotic soursop whey beverage, Ultrasonics Sonochemistry, 55: 157–164. doi:10.1016/j.ultsonch.2019.05.004.
  • Gursoy, O., Yılmaz, Y., Gokce, O., Ertan, K. (2016). Effect of ultrasound power on physicochemical and rheological properties of yoghurt drink produced with thermosonicated milk, Emirates Journal of Food and Agriculture, 28(4): 235-241. doi:10.9755/ejfa.2015-09-719.
  • Higuera-Barraza, O.A., Del Toro-Sanchez, C.L., Ruiz-Cruz, S., Márquez-Ríos, E. (2016). Effects of high-energy ultrasound on the functional properties of proteins. Ultrasonics Sonochemistry, 31: 558–562. doi:10.1016/j.ultsonch.2016.02.007.
  • Jia, R., H. Chen, H. Chen, W. Ding. (2016). Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt. Journal of Dairy Science, 99:221–227, doi:10.3168/jds.2015-10114.
  • Kneifel, W., Bonaparte, C. (2003). Acidophilus milk. In Encyclopedia of food sciences and nutrition, Caballero, B. (Ed.), Elsevier Applied Sciences Publ., UK, pp. 3-7.
  • Knorr, D., Zenker, M., Heinz, V., Lee, D.U. (2004). Applications and potential of ultrasonics in food processing, Trends in Food Science and Technology, 15: 261–266, doi:10.1016/j.tifs.2003.12.001
  • Kopeloff, N., Cheney, C. (1922). Studies on the therapeutic effect of Bacillus Acidophilus and lactose. JAMA, 79(8): 609–611, doi:10.1001/jama.1922.02640080011004.
  • Kreft, M.E., Jelen, P. (2000). Stability and Activity of β-Galactosidase in Sonicated Cultures of Lactobacillus delbrueckii ssp. bulgaricus 11842 as Affected by Temperature and Ionic Environments, Journal of Food Science, 65(8): 1364-1368.
  • Lacroix, C., Yildirim, S. (2007). Fermentation technologies for the production of probiotics with high viability and functionality. Current Opinion in Biotechnology, 18:176–183, doi:10.1016/j.copbio.2007.02.002.
  • Lentacker, I., De Cock, I., Deckers, R., De Smedt, S., Moonen, C. (2014). Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms, Advanced Drug Delivery Reviews, 72: 49-64, doi:10.1016/j.addr.2013.11.008.
  • Matsuzaki, T., Takagi, A., Ikemura, H., Matsuguchi, T., Yokokura, T. (2007). Intestinal microflora: probiotics and autoimmunity. The Journal of Nutrition, 137(3): 798-802, doi:10.1093/jn/137.3.798S.
  • Mohammadi, V., Ghasemi-Varnamkhasti, M., Ebrahimi, R., Abbasvali, M. (2014). Ultrasonic techniques for the milk production industry, Measurement, 58: 93–102, doi:10.1016/j.measurement.2014.08.022
  • Mortazavi, A., Tabatabaie, F. (2008). Study of ice cream freezing process after treatment with ultrasound, World Applied Sciences Journal, 4(2): 188–190.
  • Nguyen H.T, Truong, D.H., Kouhounde, S., Ly, S., Razafindralambo, H., Delvigne, F. (2016). Biochemical Engineering Approaches for Increasing Viability and Functionality of Probiotic Bacteria. International Journal of Moluculer Sciences, 17:867, doi:10.3390/ijms17060867
  • Nguyen, T.M.P., Lee, Y.K., Zhou, W. (2009). Stimulating fermentative activities of bifidobacteria in milk by high intensity ultrasound, International Dairy Journal, 19: 410–416, doi:10.1016/j.idairyj.2009.02.004.
  • Nguyen, T.M.P., Lee, Y.K., Zhou, W. (2012). Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation, Food Chemistry, 130: 866-74, doi:10.1016/j.foodchem.2011.07.108
  • Niamah, A.K. (2019). Ultrasound treatment (low frequency) effects on probiotic bacteria growth in fermented milk. Future of Food: Journal on Food, Agriculture and Society Article Number 103, doi:10.17170/kobra-20190709592.
  • Pitt, W.G., Ross, S.A. (2003). Ultrasound Increases the Rate of Bacterial Cell Growth, Biotechnology Progress, 19: 1038-1044.
  • Potoroko I., Kalinina, I., Botvinnikova, V., Krasulya, O., Fatkullin, R., Bagale, U., Sonawanw, S.H. (2018). Ultrasound effects based on simulation of milk processing properties, Ultrasonics Sonochemistry, 48: 463-472. doi:10.1016/j.ultsonch.2018.06.019.
  • Riener, J., Noci, F., Cronin, D.A., Morgan, D.J., Lyng, J.G. (2009). The effect of thermosonication of milk on selected physicochemical and microstructural properties of yogurt gels during fermentation. Food Chemistry, 114: 905–911, doi:10.1016/j.foodchem.2008.10.037.
  • Ryan, J., Hutchings, S.C., Fang, Z., Bandara, N., Gamlath, S., Ajlouni, S., Ranadheera, C.S. (2020). Microbial, physico-chemical and sensory characteristics of mango juice-enriched probiotic dairy drinks. International Journal of Dairy Technology, 73(1): 182-190, doi: 10.1111/1471-0307.12630.
  • Sarkar, S. (2010). Approaches for enhancing the viability of probiotics: a review. British Food Journal, 112: 329–342, doi:10.1108/00070701011034376.
  • Shimada, T., Ohdaira, E., Masuzawa, N. (2004). Effect of ultrasonic frequency on lactic acid fermentation promotion by ultrasonic irradiation. Japanese Journal of Applied Physics, 43(5S): 2831. doi:10.1143/JJAP.43.2831.
  • Shori, A.B. (2016). Influence of food matrix on the viability of probiotic bacteria: An overview based on dairy and non-dairy beverages. Food Bioscience, 13(1): 1–8. doi: 10.1016/j.fbio.2015.11.001.
  • Sömer, V.F., Akpınar, D., Başyiğit Kılıç, G. (2012). Lactobacillus casei’nin sağlık üzerine etkileri ve gıda endüstrisinde kullanımı. GIDA, 37(3): 165-172.
  • Srinivasan R., Meyer, R. (2006). Clinical safety of Lactobacillus casei strain shirota as a probiotic in critically ill children. Journal of Pediatric Gastroenterology and Nutrition, 42(2): 171-173, doi:10.1097/01.mpg.0000189335.62397.cf.
  • Sun, J., Chen, H., Qiao, Y., Liu, G., Leng, C., Zhang, Y. Lv, X., Feng, Z. (2019). The nutrient requirements of Lactobacillus rhamnosus GG and their application to fermented milk. Journal of Dairy Science, 102: 5971-5978, doi:10.3168/jds.2018-15834.
  • Tharmaraj, N., Shah, N.P. (2003). Selective Enumeration of Lactobacillus delbrueckii subsp. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus and Propionibacteria. Journal of Dairy Science, 86: 2288-2296, doi:10.3168/jds.S0022-0302(03)73821-1.
  • Wendakoon, C.N., Nakano, T., Remillard, S.C., Ozimek, L. (2007). Antimutagenic activity of Lactobacillus casei ADA 03 and its cell wall components. Milchwissenschaft, 62(3): 320-323.
  • Wu, H., Hulbert, G.J., Mount, J.R. (2001). Effects of ultrasound on milk homogenization and fermentation with yoghurt starter, Innovative Food Science and Emerging Technologies, 1(3): 211–218.
  • Wu, H., Nyborg, W.L. (2008). Ultrasound, cavitation bubbles and their interaction with cells, Advanced Drug Delivery Reviews, 60:1103–116.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Vildan Akdeniz 0000-0002-2288-7832

Early Pub Date December 20, 2022
Publication Date February 15, 2023
Published in Issue Year 2023 Volume: 48 Issue: 1

Cite

APA Akdeniz, V. (2023). ULTRASON UYGULAMASININ YOĞURT BENZERİ FERMENTE SÜT ÜRÜNÜNDE FARKLI PROBİYOTİK LAKTOBASİL TÜRLERİNİN CANLILIĞI ÜZERİNE ETKİSİ. Gıda, 48(1), 107-117. https://doi.org/10.15237/gida.GD22100
AMA Akdeniz V. ULTRASON UYGULAMASININ YOĞURT BENZERİ FERMENTE SÜT ÜRÜNÜNDE FARKLI PROBİYOTİK LAKTOBASİL TÜRLERİNİN CANLILIĞI ÜZERİNE ETKİSİ. The Journal of Food. February 2023;48(1):107-117. doi:10.15237/gida.GD22100
Chicago Akdeniz, Vildan. “ULTRASON UYGULAMASININ YOĞURT BENZERİ FERMENTE SÜT ÜRÜNÜNDE FARKLI PROBİYOTİK LAKTOBASİL TÜRLERİNİN CANLILIĞI ÜZERİNE ETKİSİ”. Gıda 48, no. 1 (February 2023): 107-17. https://doi.org/10.15237/gida.GD22100.
EndNote Akdeniz V (February 1, 2023) ULTRASON UYGULAMASININ YOĞURT BENZERİ FERMENTE SÜT ÜRÜNÜNDE FARKLI PROBİYOTİK LAKTOBASİL TÜRLERİNİN CANLILIĞI ÜZERİNE ETKİSİ. Gıda 48 1 107–117.
IEEE V. Akdeniz, “ULTRASON UYGULAMASININ YOĞURT BENZERİ FERMENTE SÜT ÜRÜNÜNDE FARKLI PROBİYOTİK LAKTOBASİL TÜRLERİNİN CANLILIĞI ÜZERİNE ETKİSİ”, The Journal of Food, vol. 48, no. 1, pp. 107–117, 2023, doi: 10.15237/gida.GD22100.
ISNAD Akdeniz, Vildan. “ULTRASON UYGULAMASININ YOĞURT BENZERİ FERMENTE SÜT ÜRÜNÜNDE FARKLI PROBİYOTİK LAKTOBASİL TÜRLERİNİN CANLILIĞI ÜZERİNE ETKİSİ”. Gıda 48/1 (February 2023), 107-117. https://doi.org/10.15237/gida.GD22100.
JAMA Akdeniz V. ULTRASON UYGULAMASININ YOĞURT BENZERİ FERMENTE SÜT ÜRÜNÜNDE FARKLI PROBİYOTİK LAKTOBASİL TÜRLERİNİN CANLILIĞI ÜZERİNE ETKİSİ. The Journal of Food. 2023;48:107–117.
MLA Akdeniz, Vildan. “ULTRASON UYGULAMASININ YOĞURT BENZERİ FERMENTE SÜT ÜRÜNÜNDE FARKLI PROBİYOTİK LAKTOBASİL TÜRLERİNİN CANLILIĞI ÜZERİNE ETKİSİ”. Gıda, vol. 48, no. 1, 2023, pp. 107-1, doi:10.15237/gida.GD22100.
Vancouver Akdeniz V. ULTRASON UYGULAMASININ YOĞURT BENZERİ FERMENTE SÜT ÜRÜNÜNDE FARKLI PROBİYOTİK LAKTOBASİL TÜRLERİNİN CANLILIĞI ÜZERİNE ETKİSİ. The Journal of Food. 2023;48(1):107-1.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/