Research Article
BibTex RIS Cite

LİMON KABUKLARINDAN KAROTENOİDLERİN YEŞİL EKSTRAKSİYONU

Year 2024, Volume: 49 Issue: 3, 580 - 593, 15.06.2024
https://doi.org/10.15237/gida.GD24039

Abstract

Günümüzde, tarım endüstrisi atıklarının tam olarak kullanımına olan ilgi giderek artmaktadır ve karotenoidler, değerli bir renklendirici ajan olarak dikkat çekmektedir. Karotenoid ekstraksiyonu için potansiyel kaynaklardan biri limon kabuğudur. Bu çalışma, limon kabuğundan maksimum miktarda karotenoid elde etmek için optimal ekstraksiyon prosedürlerini belirlemeyi amaçlamıştır. Bu bağlamda geleneksel, ultrason destekli (UAE) ve ultrason destekli enzimatik ekstraksiyon (UAEE) yöntemleri ile elde edilen ekstraktlar arasında kıyaslama yapılmıştır. En yüksek karotenoid içeriği (0.792±0.01 mg/L) UAEE ile elde edilirken, en düşük içerik (0.493±0.01 mg/L) geleneksel yöntem ile elde edilmiştir. En yüksek toplam fenolik madde miktarı (TPC) UAEE ile elde edilmiştir. Benzer şekilde, UAEE, üç yöntem arasında en yüksek antioksidan aktivite değerlerini sergilemiştir: 753.80±5.79 mg TE/L (ABTS), 624.64±10.52 mg TE/L (DPPH) ve 186.64±1.66 μmol TE/L (FRAP). Sonuç olarak, UAEE, karotenoidlerin ekstraksiyonu için umut vaat etmektedir. Dolayısıyla, atık limon kabuklarından yeşil teknoloji kullanılarak karotenoid ekstraksiyonu ile daha yüksek katma değerli, fenolik bileşim ve antioksidan özellikler açısından daha zengin bir ürün elde edilmiştir.

Ethical Statement

Ethical approval is not required for this research.

References

  • Aghajanzadeh, S., Ziaiifar, A. M., Verkerk, R. (2023). Effect of thermal and non-thermal treatments on the color of citrus juice: A review. Food Reviews International, 39(6): 3555-3577, doi: 10.1080/87559129.2021.2012799.
  • AOAC (1995). Official methods of analyses. Association of Official Analytical Chemists.15th Edition, Washington DC, the USA.
  • Ashokkumar, V., Flora, G., Sevanan, M., Sripriya, R., Chen, W. H., Park, J. H., Kumar, G. (2023). Technological advances in the production of carotenoids and their applications–A critical review. Bioresource technology, 367: 128215, doi: 10.1016/j.biortech.2022.128215.
  • Athanasiadis, V., Chatzimitakos, T., Bozinou, E., Kotsou, K., Palaiogiannis, D., Lalas, S. I. (2023). Optimization of Extraction Parameters for Enhanced Recovery of Bioactive Compounds from Quince Peels Using Response Surface Methodology. Foods, 12(11): 2099, doi: 10.3390/foods12112099.
  • Bagde, P. P., Dhenge, S., Bhivgade, S. (2017). Extraction of pectin from orange peel and lemon peel. International Journal of Engineering Technology Science and Research, 4(3): 1-7.
  • Baruah, S. R., Kotoky, U. (2018). Studies on storage behavior of Assam Lemon (Citrus limon Burm). Indian Journal of Agricultural Research, 52(2): 177-181, doi:10.18805/IJAReA-4819.
  • Benestante, A., Chalapud, M. C., Baümler, E., Carrín, M. E. (2023). Physical and mechanical properties of lemon (Citrus lemon) seeds. Journal of the Saudi Society of Agricultural Sciences, 22(4): 205-213, doi: 10.1016/j.jssas.2022.11.002.
  • Benzie, I. F., Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1): 70-76, doi: doi.org/10.1006/ abio.1996.0292.
  • Boukroufa, M., Boutekedjiret, C., Chemat, F. (2017). Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resource-Efficient Technologies, 3(3): 252-262, doi: 10.1016/j.reffit.2017.08.007.
  • Brand-Williams, W., Cuvelier, M. E., Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1): 25-30, doi: 10.1016/S0023-6438(95)80008-5.
  • Chatzimitakos, T., Athanasiadis, V., Kotsou, K., Bozinou, E., Lalas, S. I. (2023). Response Surface Optimization for the Enhancement of the Extraction of Bioactive Compounds from Citrus Limon Peel. Antioxidants, 12(8): 1605, doi: 10.3390/antiox12081605.
  • Chen, X., Xu, Y., Wu, J., Yu, Y., Zou, B., Li, L. (2023). Effects of Pectinase Pre-Treatment on the Physicochemical Properties, Bioactive Compounds, and Volatile Components of Juices from Different Cultivars of Guava. Foods, 12(2): 330, doi: 10.3390/foods12020330.
  • Dalagnol, L. M., Silveira, V. C., da Silva, H. B., Manfroi, V., Rodrigues, R. C. (2017). Improvement of pectinase, xylanase and cellulase activities by ultrasound: Effects on enzymes and substrates, kinetics and thermodynamic parameters. Process Biochemistry, 61: 80-87, doi: 10.1016/j.procbio.2017.06.029.
  • Demirdoven, A., Tokatlı, K., Korkmaz, Y. (2021). Geleneksel ve ultrasonik yöntemlerle vişne posası antosiyaninlerinin ekstraksiyonu. GIDA, 46(1): 168-179, doi:10.15237/gida.GD20119.
  • Dong, X., Hu, Y., Li, Y., Zhou, Z. (2019). The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Scientia Horticulturae, 243: 281-289, doi: 10.1016/j.scienta.2018.08.036.
  • FAO (2022). FAOSTAT database. Food and Agriculture Organization, Italy. Available: https://www.fao.org/faostat/en/#data [20 March 2024].
  • Gamage, G. C. V., Choo, W. S. (2023). Effect of hot water, ultrasound, microwave, and pectinase-assisted extraction of anthocyanins from black goji berry for food application. Heliyon, 9(3), doi: 10.1016/j.heliyon.2023.e14426.
  • Garcia, F., Cervantes, J., López, A., Alvarado, M. (2016). Fruit classification by extracting color chromaticity, shape and texture features: towards an application for supermarkets. IEEE Latin America Transactions, 14(7): 3434-3443, doi:10.1109/TLA.2016.7587652.
  • Gomez, B., Gullon, B., Yanez, R., Parajo, J. C., Alonso, J. L. (2013). Pectic oligosacharides from lemon peel wastes: Production, purification, and chemical characterization. Journal of agricultural and food chemistry, 61(42): 10043-10053, doi: 10.1021/jf402559p
  • González-Peña, M. A., Ortega-Regules, A. E., Anaya de Parrodi, C., Lozada-Ramírez, J. D. (2023). Chemistry, occurrence, properties, applications, and encapsulation of carotenoids—A review. Plants, 12(2): 313, doi: https://doi.org/10.3390/plants12020313.
  • Güzel, M., Akpınar, Ö. (2017). Turunçgil kabuklarının biyoaktif bileşenleri ve antioksidan aktivitelerinin belirlenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 7: 153-167, doi: 10.17714/gufbed.2017.07.010.
  • Jagannath, A., Biradar, R. (2019). Comparative evaluation of soxhlet and ultrasonics on the structural morphology and extraction of bioactive compounds of lemon (Citrus limon L.) peel. J. Food Chem. Nanotechnol, 5(3): 56-64, doi: https://doi.org/10.17756/jfcn.2019-072.
  • John, I., Muthukumar, K., Arunagiri, A. (2017). A review on the potential of citrus waste for D-Limonene, pectin, and bioethanol production. International Journal of Green Energy, 14(7): 599-612, doi: 10.1080/ 15435075.2017.1307753.
  • Junaid, P. M., Dar, A. H., Dash, K. K., Ghosh, T., Shams, R., Khan, S. A., Bhagya Raj, G. V. S. (2023). Advances in seed oil extraction using ultrasound assisted technology: A comprehensive review. Journal of Food Process Engineering, 46(6): e14192, doi:10.1111/jfpe.14192.
  • Karne, H., Kelkar, V., Mundhe, A., Ikar, M., Betawar, S., Chaudhari, N. (2023). Essential Oil Extraction from Orange and Lemon Peel. In E3S Web of Conferences (Vol. 455, p. 01005). EDP Sciences, doi: 10.1051/e3sconf/202345501005.
  • Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119(2): 851-858, doi: 10.1016/j.foodchem.2009.08.046.
  • Kumar, G., Upadhyay, S., Yadav, D. K., Malakar, S., Dhurve, P., Suri, S. (2023). Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio‐functional properties: A review. Journal of Food Process Engineering, 46(6): e14238, doi: 10.1111/jfpe.14238.
  • Ladole, M. R., Nair, R. R., Bhutada, Y. D., Amritkar, V. D., Pandit, A. B. (2018). Synergistic effect of ultrasonication and co-immobilized enzymes on tomato peels for lycopene extraction. Ultrasonics Sonochemistry, 48: 453-462, doi: 10.1016/j.ultsonch.2018.06.013.
  • Larsen, L. R., van der Weem, J., Caspers-Weiffenbach, R., Schieber, A., Weber, F. (2021). Effects of ultrasound on the enzymatic degradation of pectin. Ultrasonics Sonochemistry, 72: 105465, doi: 10.1016/j.ultsonch.2021.105465.
  • Le, V. V. M., Nguyen, T. T. T. (2013). Effects of ultrasound on cellulolytic activity of cellulase complex. International Food Research Journal (Malaysia).
  • Lee, H. S., Castle, W. S. (2001). Seasonal changes of carotenoid pigments and color in Hamlin, Earlygold, and Budd Blood orange juices. Journal of Agricultural and Food Chemistry, 49(2): 877-882, doi: 10.1021/jf000654r.
  • Li, Z., Zhou, M., Liu, N., Zhang, F., An, K., Xiong, X., Le, T. (2023). Engineered biochar derived from lemon peel waste for highly efficient removal of organic pollutants from water. Arabian Journal of Chemistry, 16(10): 105158. doi: 10.1016/j.arabjc.2023.105158.
  • Lin, B., Wang, S., Zhou, A., Hu, Q., Huang, G. (2023). Ultrasound-assisted enzyme extraction and properties of Shatian pomelo peel polysaccharide. Ultrasonics Sonochemistry, 98: 106507, doi: 10.1016/j.ultsonch.2023.106507.
  • Ma, Z., Li, L., Wu, C., Huang, Y., Teng, F., Li, Y. (2022). Effects of combined enzymatic and ultrasonic treatments on the structure and gel properties of soybean protein isolate. Lwt, 158: 113123, doi: 10.1016/j.lwt.2022.113123.
  • Magalhães, D., Vilas-Boas, A. A., Teixeira, P., Pintado, M. (2023). Functional ingredients and additives from lemon by-products and their applications in food preservation: A review. Foods, 12(5): 1095, doi: 10.3390/foods12051095.
  • Mapholi, Z., Goosen, N. J. (2023). Optimization of fucoidan recovery by ultrasound-assisted enzymatic extraction from South African kelp, Ecklonia maxima. Ultrasonics Sonochemistry, 101: 106710, doi: 10.1016/j.ultsonch.2023.106710.
  • Meral, H., Savaş, İ., Çiçek, Ş. K., Demirdöven, A. (2024). Peach pomace: a potential probiotic carrier for fiber enrichment in milk. Journal of Food Measurement and Characterization, 18(3): 1933-1946, doi: 10.1007/s11694-023-02315-7.
  • Mercado-Mercado, G., Montalvo-González, E., González-Aguilar, G. A., Alvarez-Parrilla, E., Sáyago-Ayerdi, S. G. (2018). Ultrasound-assisted extraction of carotenoids from mango (Mangifera indica L.‘Ataulfo’) by-products on in vitro bioaccessibility. Food Bioscience, 21: 125-131, doi: 10.1016/j.fbio.2017.12.012.
  • Osete-Alcaraz, A., Bautista-Ortín, A. B., Ortega-Regules, A. E., Gómez-Plaza, E. (2019). Combined use of pectolytic enzymes and ultrasounds for improving the extraction of phenolic compounds during vinification. Food and Bioprocess Technology, 12: 1330-1339, doi: 10.1007/s11947-019-02303-0.
  • Pająk, P., Socha, R., Broniek, J., Królikowska, K., Fortuna, T. (2019). Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chemistry, 275: 69-76, doi:10.1016/j.foodchem.2018.09.081.
  • Pathak, P. D., Mandavgane, S. A., Kulkarni, B. D. (2017). Fruit peel waste: characterization and its potential uses. Current Science, 444-454, doi: 0.18520/cs/vl13/i03/444-454.
  • Radziejewska-Kubzdela, E. (2023). Effect of Ultrasonic, Thermal and Enzymatic Treatment of Mash on Yield and Content of Bioactive Compounds in Strawberry Juice. Applied Sciences, 13(7): 4268, doi: 10.3390/app13074268.
  • Ricarte, G. N., Coelho, M. A. Z., Marrucho, I. M., Ribeiro, B. D. (2020). Enzyme-assisted extraction of carotenoids and phenolic compounds from sunflower wastes using green solvents. 3 Biotech, 10: 1-11, doi: 10.1007/s13205-020-02393-0.
  • Rokhina, E. V., Lens, P., Virkutyte, J. (2009). Low-frequency ultrasound in biotechnology: state of the art. Trends in Biotechnology, 27(5): 298-306, doi:10.1016/j.tibtech.2009.02.001.
  • Ruiz, D., Egea, J., Tomás-Barberán, F. A., Gil, M. I. (2005). Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. Journal of agricultural and food chemistry, 53(16): 6368-6374, doi: 10.1021/JF0480703.
  • Sebdani, M. M., Abbasi, H. (2023). Green extraction of carotenoids from pumpkin with ultrasound-assisted method; optimization using response surface methodology. Microchemical Journal, 193: 109092, doi: 10.1016/ j.microc.2023.109092.
  • Shahram, H., Dinani, S. T. (2019). Optimization of ultrasonic‐assisted enzymatic extraction of β‐carotene from orange processing waste. Journal of Food Process Engineering, 42(4): e13042, doi: 10.1111/jfpe.13042.
  • Shahram, H., Dinani, S. T., Amouheydari, M. (2019). Effects of pectinase concentration, ultrasonic time, and pH of an ultrasonic-assisted enzymatic process on extraction of phenolic compounds from orange processing waste. Journal of Food Measurement and Characterization, 13(1): 487-498, doi: 10.1007/s11694-018-9962-6.
  • Siddiqui, H., Sultan, Z., Yousuf, O., Malik, M., Younis, K. (2023). A review of the health benefits, functional properties, and ultrasound-assisted dietary fiber extraction. Bioactive Carbohydrates and Dietary Fibre, 100356, doi: 10.1016/j.bcdf.2023.100356.
  • Singla, M., Singh, A., Sit, N. (2023). Effect of microwave and enzymatic pretreatment and type of solvent on kinetics of ultrasound assisted extraction of bioactive compounds from ripe papaya peel. Journal of Food Process Engineering, 46(6): e14119, doi:10.1111/ jfpe.14119.
  • Singleton, V. L., Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3): 144-158.
  • Sun, Y., Liu, D., Chen, J., Ye, X., Yu, D. (2011). Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrasonics sonochemistry, 18(1): 243-249, doi: 10.1016/j.ultsonch.2010.05.014.
  • Suo, A., Fan, G., Wu, C., Li, T., Cong, K. (2023). Green extraction of carotenoids from apricot flesh by ultrasound assisted corn oil extraction: Optimization, identification, and application. Food Chemistry, 420: 136096, doi: 10.1016/j.foodchem.2023.136096.
  • Suri, S., Singh, A., Nema, P. K. (2023). Bioactive Compounds in Citrus Fruits: Extraction and Identification. In Recent Advances in Citrus Fruits, Nema, P. K. (chief ed.), Volume 1, Springer International Publishing, Cham, pp. 427-450. doi: 10.1007/978-3-031-37534-7_14.
  • Tapre, A. R., Jain, R. K. (2014). Pectinases: Enzymes for fruit processing industry. International Food Research Journal, 21(2): 447.
  • Tchabo, W., Ma, Y., Engmann, F. N., Zhang, H. (2015). Ultrasound-assisted enzymatic extraction (UAEE) of phytochemical compounds from mulberry (Morus nigra) must and optimization study using response surface methodology. Industrial Crops and Products, 63: 214-225, doi: 10.1016/j.indcrop.2014.09.053.
  • TUIK (2023). Turkish Statistical Institute, Turkey. Available: https://data.tuik.gov.tr/data [20 March 2024].
  • Umair, M., Jabbar, S., Nasiru, M. M., Lu, Z., Zhang, J., Abid, M., Zhao, L. (2021). Ultrasound-assisted extraction of carotenoids from carrot pomace and their optimization through response surface methodology. Molecules, 26(22): 6763, doi:10.3390/molecules26226763
  • Wang, D., Ma, X., Yan, L., Chantapakul, T., Wang, W., Ding, T., Liu, D. (2017). Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics. Carbohydrate Polymers, 175: 47-54, doi:10.1016/ j.carbpol.2017.06.093
  • Wang, W., Ma, X., Xu, Y., Cao, Y., Jiang, Z., Ding, T., Liu, D. (2015). Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Chemistry, 178: 106-114, doi: 10.1016/j.foodchem.2015.01.080
  • Weldekidan, H., Patel, H., Mohanty, A., Misra, M. (2024). Synthesis of porous and activated carbon from lemon peel waste for CO2 adsorption. Carbon Capture Science & Technology, 10: 100149, doi: 10.1016/j.ccst.2023.100149.
  • Wu, H., Zhu, J., Diao, W., Wang, C. (2014). Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata). Carbohydrate Polymers, 113: 314-324, doi: 10.1016/ j.carbpol.2014.07.025.
  • Xu, L., Guo, S., Li, Y., Guo, W., Guo, X., Hong, S. (2023). Ultrasound-assisted enzymatic extraction and bioactivity analysis of polypeptides from Cordyceps militaris. Journal of Chemistry, 2023, doi: 10.1155/2023/1233867.
  • Yun, C., Ji, X., Chen, Y., Zhao, Z., Gao, Y., Gu, L., Wang, H. (2023). Ultrasound-assisted enzymatic extraction of Scutellaria baicalensis root polysaccharide and its hypoglycemic and immunomodulatory activities. International Journal of Biological Macromolecules, 227: 134-145, doi: 10.1016/j.ijbiomac.2022.12.115

GREEN EXTRACTION OF CAROTENOIDS FROM LEMON PEELS

Year 2024, Volume: 49 Issue: 3, 580 - 593, 15.06.2024
https://doi.org/10.15237/gida.GD24039

Abstract

Nowadays, there is a growing interest in fully utilizing agro-industrial wastes, with carotenoids gaining attention as valuable coloring agents. One of the potential sources for carotenoid extraction is lemon peel. The purpose of this study was to determine optimal extraction techniques for extracting as much carotenoids as possible from lemon peel. In this context, a comparison was conducted among extracts obtained via conventional, ultrasound-assisted (UAE), and ultrasound-assisted enzymatic (UAEE) extraction methods. The highest carotenoid content (0.792±0.01 mg/L) was achieved with UAEE, while the lowest (0.493±0.01 mg/L) was obtained conventionally. UAEE exhibited the highest antioxidant activity values among three methods: 753.80±5.79 mg TE/L (ABTS), 624.64±10.52 mg TE/L (DPPH), and 186.64±1.66 μmol TE/L (FRAP). In conclusion, UAEE showed promise in extracting carotenoids from lemon peel. Thus, by carotenoid extraction using green technology from waste lemon peels, with higher added value, richer in terms of phenolic composition and antioxidant properties, has been obtained.

References

  • Aghajanzadeh, S., Ziaiifar, A. M., Verkerk, R. (2023). Effect of thermal and non-thermal treatments on the color of citrus juice: A review. Food Reviews International, 39(6): 3555-3577, doi: 10.1080/87559129.2021.2012799.
  • AOAC (1995). Official methods of analyses. Association of Official Analytical Chemists.15th Edition, Washington DC, the USA.
  • Ashokkumar, V., Flora, G., Sevanan, M., Sripriya, R., Chen, W. H., Park, J. H., Kumar, G. (2023). Technological advances in the production of carotenoids and their applications–A critical review. Bioresource technology, 367: 128215, doi: 10.1016/j.biortech.2022.128215.
  • Athanasiadis, V., Chatzimitakos, T., Bozinou, E., Kotsou, K., Palaiogiannis, D., Lalas, S. I. (2023). Optimization of Extraction Parameters for Enhanced Recovery of Bioactive Compounds from Quince Peels Using Response Surface Methodology. Foods, 12(11): 2099, doi: 10.3390/foods12112099.
  • Bagde, P. P., Dhenge, S., Bhivgade, S. (2017). Extraction of pectin from orange peel and lemon peel. International Journal of Engineering Technology Science and Research, 4(3): 1-7.
  • Baruah, S. R., Kotoky, U. (2018). Studies on storage behavior of Assam Lemon (Citrus limon Burm). Indian Journal of Agricultural Research, 52(2): 177-181, doi:10.18805/IJAReA-4819.
  • Benestante, A., Chalapud, M. C., Baümler, E., Carrín, M. E. (2023). Physical and mechanical properties of lemon (Citrus lemon) seeds. Journal of the Saudi Society of Agricultural Sciences, 22(4): 205-213, doi: 10.1016/j.jssas.2022.11.002.
  • Benzie, I. F., Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1): 70-76, doi: doi.org/10.1006/ abio.1996.0292.
  • Boukroufa, M., Boutekedjiret, C., Chemat, F. (2017). Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resource-Efficient Technologies, 3(3): 252-262, doi: 10.1016/j.reffit.2017.08.007.
  • Brand-Williams, W., Cuvelier, M. E., Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1): 25-30, doi: 10.1016/S0023-6438(95)80008-5.
  • Chatzimitakos, T., Athanasiadis, V., Kotsou, K., Bozinou, E., Lalas, S. I. (2023). Response Surface Optimization for the Enhancement of the Extraction of Bioactive Compounds from Citrus Limon Peel. Antioxidants, 12(8): 1605, doi: 10.3390/antiox12081605.
  • Chen, X., Xu, Y., Wu, J., Yu, Y., Zou, B., Li, L. (2023). Effects of Pectinase Pre-Treatment on the Physicochemical Properties, Bioactive Compounds, and Volatile Components of Juices from Different Cultivars of Guava. Foods, 12(2): 330, doi: 10.3390/foods12020330.
  • Dalagnol, L. M., Silveira, V. C., da Silva, H. B., Manfroi, V., Rodrigues, R. C. (2017). Improvement of pectinase, xylanase and cellulase activities by ultrasound: Effects on enzymes and substrates, kinetics and thermodynamic parameters. Process Biochemistry, 61: 80-87, doi: 10.1016/j.procbio.2017.06.029.
  • Demirdoven, A., Tokatlı, K., Korkmaz, Y. (2021). Geleneksel ve ultrasonik yöntemlerle vişne posası antosiyaninlerinin ekstraksiyonu. GIDA, 46(1): 168-179, doi:10.15237/gida.GD20119.
  • Dong, X., Hu, Y., Li, Y., Zhou, Z. (2019). The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Scientia Horticulturae, 243: 281-289, doi: 10.1016/j.scienta.2018.08.036.
  • FAO (2022). FAOSTAT database. Food and Agriculture Organization, Italy. Available: https://www.fao.org/faostat/en/#data [20 March 2024].
  • Gamage, G. C. V., Choo, W. S. (2023). Effect of hot water, ultrasound, microwave, and pectinase-assisted extraction of anthocyanins from black goji berry for food application. Heliyon, 9(3), doi: 10.1016/j.heliyon.2023.e14426.
  • Garcia, F., Cervantes, J., López, A., Alvarado, M. (2016). Fruit classification by extracting color chromaticity, shape and texture features: towards an application for supermarkets. IEEE Latin America Transactions, 14(7): 3434-3443, doi:10.1109/TLA.2016.7587652.
  • Gomez, B., Gullon, B., Yanez, R., Parajo, J. C., Alonso, J. L. (2013). Pectic oligosacharides from lemon peel wastes: Production, purification, and chemical characterization. Journal of agricultural and food chemistry, 61(42): 10043-10053, doi: 10.1021/jf402559p
  • González-Peña, M. A., Ortega-Regules, A. E., Anaya de Parrodi, C., Lozada-Ramírez, J. D. (2023). Chemistry, occurrence, properties, applications, and encapsulation of carotenoids—A review. Plants, 12(2): 313, doi: https://doi.org/10.3390/plants12020313.
  • Güzel, M., Akpınar, Ö. (2017). Turunçgil kabuklarının biyoaktif bileşenleri ve antioksidan aktivitelerinin belirlenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 7: 153-167, doi: 10.17714/gufbed.2017.07.010.
  • Jagannath, A., Biradar, R. (2019). Comparative evaluation of soxhlet and ultrasonics on the structural morphology and extraction of bioactive compounds of lemon (Citrus limon L.) peel. J. Food Chem. Nanotechnol, 5(3): 56-64, doi: https://doi.org/10.17756/jfcn.2019-072.
  • John, I., Muthukumar, K., Arunagiri, A. (2017). A review on the potential of citrus waste for D-Limonene, pectin, and bioethanol production. International Journal of Green Energy, 14(7): 599-612, doi: 10.1080/ 15435075.2017.1307753.
  • Junaid, P. M., Dar, A. H., Dash, K. K., Ghosh, T., Shams, R., Khan, S. A., Bhagya Raj, G. V. S. (2023). Advances in seed oil extraction using ultrasound assisted technology: A comprehensive review. Journal of Food Process Engineering, 46(6): e14192, doi:10.1111/jfpe.14192.
  • Karne, H., Kelkar, V., Mundhe, A., Ikar, M., Betawar, S., Chaudhari, N. (2023). Essential Oil Extraction from Orange and Lemon Peel. In E3S Web of Conferences (Vol. 455, p. 01005). EDP Sciences, doi: 10.1051/e3sconf/202345501005.
  • Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119(2): 851-858, doi: 10.1016/j.foodchem.2009.08.046.
  • Kumar, G., Upadhyay, S., Yadav, D. K., Malakar, S., Dhurve, P., Suri, S. (2023). Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio‐functional properties: A review. Journal of Food Process Engineering, 46(6): e14238, doi: 10.1111/jfpe.14238.
  • Ladole, M. R., Nair, R. R., Bhutada, Y. D., Amritkar, V. D., Pandit, A. B. (2018). Synergistic effect of ultrasonication and co-immobilized enzymes on tomato peels for lycopene extraction. Ultrasonics Sonochemistry, 48: 453-462, doi: 10.1016/j.ultsonch.2018.06.013.
  • Larsen, L. R., van der Weem, J., Caspers-Weiffenbach, R., Schieber, A., Weber, F. (2021). Effects of ultrasound on the enzymatic degradation of pectin. Ultrasonics Sonochemistry, 72: 105465, doi: 10.1016/j.ultsonch.2021.105465.
  • Le, V. V. M., Nguyen, T. T. T. (2013). Effects of ultrasound on cellulolytic activity of cellulase complex. International Food Research Journal (Malaysia).
  • Lee, H. S., Castle, W. S. (2001). Seasonal changes of carotenoid pigments and color in Hamlin, Earlygold, and Budd Blood orange juices. Journal of Agricultural and Food Chemistry, 49(2): 877-882, doi: 10.1021/jf000654r.
  • Li, Z., Zhou, M., Liu, N., Zhang, F., An, K., Xiong, X., Le, T. (2023). Engineered biochar derived from lemon peel waste for highly efficient removal of organic pollutants from water. Arabian Journal of Chemistry, 16(10): 105158. doi: 10.1016/j.arabjc.2023.105158.
  • Lin, B., Wang, S., Zhou, A., Hu, Q., Huang, G. (2023). Ultrasound-assisted enzyme extraction and properties of Shatian pomelo peel polysaccharide. Ultrasonics Sonochemistry, 98: 106507, doi: 10.1016/j.ultsonch.2023.106507.
  • Ma, Z., Li, L., Wu, C., Huang, Y., Teng, F., Li, Y. (2022). Effects of combined enzymatic and ultrasonic treatments on the structure and gel properties of soybean protein isolate. Lwt, 158: 113123, doi: 10.1016/j.lwt.2022.113123.
  • Magalhães, D., Vilas-Boas, A. A., Teixeira, P., Pintado, M. (2023). Functional ingredients and additives from lemon by-products and their applications in food preservation: A review. Foods, 12(5): 1095, doi: 10.3390/foods12051095.
  • Mapholi, Z., Goosen, N. J. (2023). Optimization of fucoidan recovery by ultrasound-assisted enzymatic extraction from South African kelp, Ecklonia maxima. Ultrasonics Sonochemistry, 101: 106710, doi: 10.1016/j.ultsonch.2023.106710.
  • Meral, H., Savaş, İ., Çiçek, Ş. K., Demirdöven, A. (2024). Peach pomace: a potential probiotic carrier for fiber enrichment in milk. Journal of Food Measurement and Characterization, 18(3): 1933-1946, doi: 10.1007/s11694-023-02315-7.
  • Mercado-Mercado, G., Montalvo-González, E., González-Aguilar, G. A., Alvarez-Parrilla, E., Sáyago-Ayerdi, S. G. (2018). Ultrasound-assisted extraction of carotenoids from mango (Mangifera indica L.‘Ataulfo’) by-products on in vitro bioaccessibility. Food Bioscience, 21: 125-131, doi: 10.1016/j.fbio.2017.12.012.
  • Osete-Alcaraz, A., Bautista-Ortín, A. B., Ortega-Regules, A. E., Gómez-Plaza, E. (2019). Combined use of pectolytic enzymes and ultrasounds for improving the extraction of phenolic compounds during vinification. Food and Bioprocess Technology, 12: 1330-1339, doi: 10.1007/s11947-019-02303-0.
  • Pająk, P., Socha, R., Broniek, J., Królikowska, K., Fortuna, T. (2019). Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chemistry, 275: 69-76, doi:10.1016/j.foodchem.2018.09.081.
  • Pathak, P. D., Mandavgane, S. A., Kulkarni, B. D. (2017). Fruit peel waste: characterization and its potential uses. Current Science, 444-454, doi: 0.18520/cs/vl13/i03/444-454.
  • Radziejewska-Kubzdela, E. (2023). Effect of Ultrasonic, Thermal and Enzymatic Treatment of Mash on Yield and Content of Bioactive Compounds in Strawberry Juice. Applied Sciences, 13(7): 4268, doi: 10.3390/app13074268.
  • Ricarte, G. N., Coelho, M. A. Z., Marrucho, I. M., Ribeiro, B. D. (2020). Enzyme-assisted extraction of carotenoids and phenolic compounds from sunflower wastes using green solvents. 3 Biotech, 10: 1-11, doi: 10.1007/s13205-020-02393-0.
  • Rokhina, E. V., Lens, P., Virkutyte, J. (2009). Low-frequency ultrasound in biotechnology: state of the art. Trends in Biotechnology, 27(5): 298-306, doi:10.1016/j.tibtech.2009.02.001.
  • Ruiz, D., Egea, J., Tomás-Barberán, F. A., Gil, M. I. (2005). Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. Journal of agricultural and food chemistry, 53(16): 6368-6374, doi: 10.1021/JF0480703.
  • Sebdani, M. M., Abbasi, H. (2023). Green extraction of carotenoids from pumpkin with ultrasound-assisted method; optimization using response surface methodology. Microchemical Journal, 193: 109092, doi: 10.1016/ j.microc.2023.109092.
  • Shahram, H., Dinani, S. T. (2019). Optimization of ultrasonic‐assisted enzymatic extraction of β‐carotene from orange processing waste. Journal of Food Process Engineering, 42(4): e13042, doi: 10.1111/jfpe.13042.
  • Shahram, H., Dinani, S. T., Amouheydari, M. (2019). Effects of pectinase concentration, ultrasonic time, and pH of an ultrasonic-assisted enzymatic process on extraction of phenolic compounds from orange processing waste. Journal of Food Measurement and Characterization, 13(1): 487-498, doi: 10.1007/s11694-018-9962-6.
  • Siddiqui, H., Sultan, Z., Yousuf, O., Malik, M., Younis, K. (2023). A review of the health benefits, functional properties, and ultrasound-assisted dietary fiber extraction. Bioactive Carbohydrates and Dietary Fibre, 100356, doi: 10.1016/j.bcdf.2023.100356.
  • Singla, M., Singh, A., Sit, N. (2023). Effect of microwave and enzymatic pretreatment and type of solvent on kinetics of ultrasound assisted extraction of bioactive compounds from ripe papaya peel. Journal of Food Process Engineering, 46(6): e14119, doi:10.1111/ jfpe.14119.
  • Singleton, V. L., Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3): 144-158.
  • Sun, Y., Liu, D., Chen, J., Ye, X., Yu, D. (2011). Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrasonics sonochemistry, 18(1): 243-249, doi: 10.1016/j.ultsonch.2010.05.014.
  • Suo, A., Fan, G., Wu, C., Li, T., Cong, K. (2023). Green extraction of carotenoids from apricot flesh by ultrasound assisted corn oil extraction: Optimization, identification, and application. Food Chemistry, 420: 136096, doi: 10.1016/j.foodchem.2023.136096.
  • Suri, S., Singh, A., Nema, P. K. (2023). Bioactive Compounds in Citrus Fruits: Extraction and Identification. In Recent Advances in Citrus Fruits, Nema, P. K. (chief ed.), Volume 1, Springer International Publishing, Cham, pp. 427-450. doi: 10.1007/978-3-031-37534-7_14.
  • Tapre, A. R., Jain, R. K. (2014). Pectinases: Enzymes for fruit processing industry. International Food Research Journal, 21(2): 447.
  • Tchabo, W., Ma, Y., Engmann, F. N., Zhang, H. (2015). Ultrasound-assisted enzymatic extraction (UAEE) of phytochemical compounds from mulberry (Morus nigra) must and optimization study using response surface methodology. Industrial Crops and Products, 63: 214-225, doi: 10.1016/j.indcrop.2014.09.053.
  • TUIK (2023). Turkish Statistical Institute, Turkey. Available: https://data.tuik.gov.tr/data [20 March 2024].
  • Umair, M., Jabbar, S., Nasiru, M. M., Lu, Z., Zhang, J., Abid, M., Zhao, L. (2021). Ultrasound-assisted extraction of carotenoids from carrot pomace and their optimization through response surface methodology. Molecules, 26(22): 6763, doi:10.3390/molecules26226763
  • Wang, D., Ma, X., Yan, L., Chantapakul, T., Wang, W., Ding, T., Liu, D. (2017). Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics. Carbohydrate Polymers, 175: 47-54, doi:10.1016/ j.carbpol.2017.06.093
  • Wang, W., Ma, X., Xu, Y., Cao, Y., Jiang, Z., Ding, T., Liu, D. (2015). Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Chemistry, 178: 106-114, doi: 10.1016/j.foodchem.2015.01.080
  • Weldekidan, H., Patel, H., Mohanty, A., Misra, M. (2024). Synthesis of porous and activated carbon from lemon peel waste for CO2 adsorption. Carbon Capture Science & Technology, 10: 100149, doi: 10.1016/j.ccst.2023.100149.
  • Wu, H., Zhu, J., Diao, W., Wang, C. (2014). Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata). Carbohydrate Polymers, 113: 314-324, doi: 10.1016/ j.carbpol.2014.07.025.
  • Xu, L., Guo, S., Li, Y., Guo, W., Guo, X., Hong, S. (2023). Ultrasound-assisted enzymatic extraction and bioactivity analysis of polypeptides from Cordyceps militaris. Journal of Chemistry, 2023, doi: 10.1155/2023/1233867.
  • Yun, C., Ji, X., Chen, Y., Zhao, Z., Gao, Y., Gu, L., Wang, H. (2023). Ultrasound-assisted enzymatic extraction of Scutellaria baicalensis root polysaccharide and its hypoglycemic and immunomodulatory activities. International Journal of Biological Macromolecules, 227: 134-145, doi: 10.1016/j.ijbiomac.2022.12.115
There are 64 citations in total.

Details

Primary Language English
Subjects Fruit-Vegetables Technology
Journal Section Articles
Authors

Hilal Meral 0000-0001-6238-7958

Aslihan Demirdöven 0000-0003-1246-9132

Publication Date June 15, 2024
Submission Date March 31, 2024
Acceptance Date May 20, 2024
Published in Issue Year 2024 Volume: 49 Issue: 3

Cite

APA Meral, H., & Demirdöven, A. (2024). GREEN EXTRACTION OF CAROTENOIDS FROM LEMON PEELS. Gıda, 49(3), 580-593. https://doi.org/10.15237/gida.GD24039
AMA Meral H, Demirdöven A. GREEN EXTRACTION OF CAROTENOIDS FROM LEMON PEELS. The Journal of Food. June 2024;49(3):580-593. doi:10.15237/gida.GD24039
Chicago Meral, Hilal, and Aslihan Demirdöven. “GREEN EXTRACTION OF CAROTENOIDS FROM LEMON PEELS”. Gıda 49, no. 3 (June 2024): 580-93. https://doi.org/10.15237/gida.GD24039.
EndNote Meral H, Demirdöven A (June 1, 2024) GREEN EXTRACTION OF CAROTENOIDS FROM LEMON PEELS. Gıda 49 3 580–593.
IEEE H. Meral and A. Demirdöven, “GREEN EXTRACTION OF CAROTENOIDS FROM LEMON PEELS”, The Journal of Food, vol. 49, no. 3, pp. 580–593, 2024, doi: 10.15237/gida.GD24039.
ISNAD Meral, Hilal - Demirdöven, Aslihan. “GREEN EXTRACTION OF CAROTENOIDS FROM LEMON PEELS”. Gıda 49/3 (June 2024), 580-593. https://doi.org/10.15237/gida.GD24039.
JAMA Meral H, Demirdöven A. GREEN EXTRACTION OF CAROTENOIDS FROM LEMON PEELS. The Journal of Food. 2024;49:580–593.
MLA Meral, Hilal and Aslihan Demirdöven. “GREEN EXTRACTION OF CAROTENOIDS FROM LEMON PEELS”. Gıda, vol. 49, no. 3, 2024, pp. 580-93, doi:10.15237/gida.GD24039.
Vancouver Meral H, Demirdöven A. GREEN EXTRACTION OF CAROTENOIDS FROM LEMON PEELS. The Journal of Food. 2024;49(3):580-93.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/