Review
BibTex RIS Cite

FILAMENTOUS FUNGI (MOLDS) AS A FOOD SOURCE

Year 2024, Volume: 49 Issue: 4, 751 - 765, 14.08.2024
https://doi.org/10.15237/gida.GD24027

Abstract

The increasing human population and the consequent rise in food demand will make it progressively difficult to access a diet containing sufficient nutrients in the future. The availability of current plant and animal-based foods depends on climate and has negative effects on the environment in long-term. Therefore, researchers are looking for alternative sources to facilitate, and promote the transition to a sustainable diet. Filamentous fungi can break down complex substrates and convert them into valuable products. Fungal biomass obtained through fermentation is a source of important essential compounds such as proteins, enzymes, antioxidants, vitamins, minerals, polyunsaturated fatty acids, organic acids, and fibers. The most well-known commercial example of an alternative food source with meat-like texture produced from the biomass of a filamentous fungus, Fusarium venenatum, is Quorn. Recent studies have focused on the development of high-value-added products, and the achievement of sustainability by utilizing filamentous fungi to process food industry waste and by-products. This review covers studies on biomass production from food waste or by-products using filamentous fungi, its composition, and its effects on health.

References

  • Aruna, T. E. (2019). Production of value-added product from pineapple peels using solid state fermentation. Innovative Food Science & Emerging Technologies, 57: 102193, doi: 10.1016/ j.ifset.2019.102193.
  • Ahmad, M. I., Farooq, S., Alhamoud, Y., Li, C., Zhang, H. (2022). A review on mycoprotein: History, nutritional composition, production methods, and health benefits. Trends in Food Science & Technology, 121: 14-29, doi: 10.1016/ j.tifs.2022.01.027.
  • Amara, A. A., El-Baky, N. A. (2023). Fungi as a source of edible proteins and animal feed. Journal of Fungi, 9(1): 73, doi: 10.3390/jof9010073.
  • Atta-Delgado, M. X., Lozano, S. P. G., Torres, J. A. (2023). A survey on the prevalence of sustainable diets and the eating experience satisfaction. Innovative Food Science & Emerging Technologies, 84: 103305, doi: 10.1016/ j.ifset.2023.103305.
  • Awasthi, M. K., Kumar, V., Hellwig, C., Wikandari, R., Harirchi, S., Sar, T., Taherzadeh, M. J. (2022). Filamentous fungi for sustainable vegan food production systems within a circular economy: Present status and future prospects. Food Research International, 164: 112318, doi: 10.1016/j.foodres.2022.112318.
  • Barnharst, T., Sun, X., Rajendran, A., Urriola, P., Shurson, G., Hu, B. (2021). Enhanced protein and amino acids of corn–ethanol co-product by Mucor indicus and Rhizopus oryzae. Bioprocess and Biosystems Engineering, 44(9): 1989-2000, doi: 10.1007/ s00449-021-02580-0.
  • Barzee, T. J., Cao, L., Pan, Z., Zhang, R. (2021). Fungi for future foods. Journal of Future Foods, 1(1): 25-37, doi: 10.1016/j.jfutfo.2021.09.002.
  • Borujeni, N. E., Karimi, K., Denayer, J. F., Kumar, R. (2022). Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus. Energy, 240: 122469, doi: 10.1016/ j.energy.2021.122469.
  • Braho, V., Sar, T., Taherzadeh, M. J. (2023). Cultivation of edible filamentous fungi on pomegranate by-products as feedstocks to produce mycoprotein. Systems Microbiology and Biomanufacturing, 1-12, doi: 10.1007/s43393-023-00212-0.
  • Cherta-Murillo, A., Danckert, N. P., Valdivia-Garcia, M., Chambers, E. S., Roberts, L., Miguens-Blanco, J., Frost, G. S. (2023). Gut microbiota fermentation profiles of pre-digested mycoprotein (Quorn) using faecal batch cultures in vitro: a preliminary study. International Journal of Food Sciences and Nutrition, 74(3): 327-337, doi: 10.1080/09637486.2023.2216404.
  • Colosimo, R., Mulet-Cabero, A. I., Cross, K. L., Haider, K., Edwards, C. H., Warren, F. J., Finnigan, T. J. A., Wilde, P. J. (2021). β-glucan release from fungal and plant cell walls after simulated gastrointestinal digestion. Journal of Functional Foods, 83: 104543, doi: 10.1016/ j.jff.2021.104543.
  • Copetti, M. V. (2019). Fungi as industrial producers of food ingredients. Current Opinion in Food Science, 25: 52-56, doi: 10.1016/ j.cofs.2019.02.006.
  • de Lima, T. M., de Almeida, A. B., Peres, D. S., de Sousa, T. L., de Freitas, B. S. M., Silva, F. G., Egea, M. B. (2021). Rhizopus oligosporus as a biotransforming microorganism of Anacardium othonianum Rizz. byproduct for production of high -protein, -antioxidant, and -fiber ingredient. LWT- Food Science and Technology, 135: 110030, doi: 10.1016/j.lwt.2020.110030.
  • Derbyshire, E. J., Delange, J. (2021). Fungal protein–what is it and what is the health evidence? A systematic review focusing on mycoprotein. Frontiers in Sustainable Food Systems, 5: 581682, doi: 10.3389/ fsufs.2021.581682.
  • Derbyshire, E. J., Theobald, H., Wall, B. T., Stephens, F. (2023). Food for our future: the nutritional science behind the sustainable fungal protein-mycoprotein. A symposium review. Journal of Nutritional Science, 12(e44): 1-6, doi:10.1017/jns.2023.29.
  • Dunlop, M. V., Kilroe, S. P., Bowtell, J. L., Finnigan, T. J., Salmon, D. L., Wall, B. T. (2017). Mycoprotein represents a bioavailable and insulinotropic non-animal-derived dietary protein source: a dose–response study. British Journal of Nutrition, 118(9): 673-685, doi: 10.1017/ S0007114517002409.
  • Dzurendová, S., Shapaval, V., Tafintseva, V., Kohler, A., Byrtusová, D., Szotkowski, M., Immermann, B. (2021). Assessment of biotechnologically important filamentous fungal biomass by Fourier Transform Raman Spectroscopy. International Journal of Molecular Sciences, 22(13): 6710, doi: 10.3390/ijms22136710.
  • EC, (2008). Commission Directive 2008/100/EC of 28 October 2008 amending council directive 90/496/EEC on nutrition labelling for foodstuffs as regards recommended daily allowances, energy conversion factors and definitions. Official Journal of European Union 38: 208–211.
  • Elango, R., Laviano, A. (2019). From old to new: roles of protein sources and individual amino acids in clinical nutrition. Current Opinion in Clinical Nutrition & Metabolic Care, 22(1): 58-59, doi: 10.1097/MCO.0000000000000532.
  • El-Enshasy, H. A. (2007). Filamentous fungal cultures–process characteristics, products, and applications. In: Bioprocessing for Value-added Products from Renewable Resources, McNeil B., Archer, D., Giavasis I., Harvey L. (chief ed.), Elsevier Science, Amsterdam, Netherlands, pp. 225-261.
  • Ezekiel, O. O., Aworh, O. C., Blaschek, H. P., Ezeji, T. C. (2010). Protein enrichment of cassava peel by submerged fermentation with Trichoderma viride (ATCC 36316). African Journal of Biotechnology, 9(2): 117-122.
  • Finnigan, T., Needham, L., Abbott, C. (2016). Mycoprotein: A Healthy New Protein With a Low Environmental Impact. In: Sustainable Protein Sources, Nadathur, S., Scanlin, L. (chief ed.), Academic Press, Cambridge, the US, pp. 305-323.
  • Gastaldello, A., Giampieri, F., De Giuseppe, R., Grosso, G., Baroni, L., Battino, M. (2022). The rise of processed meat alternatives: A narrative review of the manufacturing, composition, nutritional profile and health effects of newer sources of protein, and their place in healthier diets. Trends in Food Science & Technology, 127: 263-271, doi: 10.1016/j.tifs.2022.07.005.
  • Giavasis, I., Seviour, R. J., Hudman, P., McNeil, B. (2019). Fungal bioproducts for use in food: polysaccharides, organic acids, and mycoprotein. In: Advances in Food Bioproducts and Bioprocessing Technologies, Chavez-Gonzalez, M. L., Balagurusamy, N., Aguilar, C. (chief ed.), CRC press, Florida, the ABD, pp 511-548.
  • Gibbs, J., Leung, G. K. (2023). The effect of plant-based and mycoprotein-based meat substitute consumption on cardiometabolic risk factors: a systematic review and meta-analysis of controlled ıntervention trials. Dietetics, 2(1): 104-122, doi: 10.3390/dietetics2010009.
  • Gmoser, R., Sintca, C., Taherzadeh, M. J., Lennartsson, P. R. (2019). Combining submerged and solid state fermentation to convert waste bread into protein and pigment using the edible filamentous fungus Neurospora intermedia. Waste Management, 97: 63-70, doi: 10.3390/ fermentation4010011.
  • Gulsunoglu Konuskan, Z., Kilic Akyilmaz, M. (2022). Microbial bioconversion of phenolic compounds in agro-industrial wastes: a review of mechanisms and effective factors. Journal of Agricultural and Food Chemistry, 70(23): 6901-6910 doi: 10.1016/j.bcab.2020.101562.
  • Harris, H. C., Edwards, C. A., Morrison, D. J. (2019). Short chain fatty acid production from mycoprotein and mycoprotein fibre in an in vitro fermentation model. Nutrients, 11(4): 800, doi: 10.3390/nu11040800.
  • Hashempour‐Baltork, F., Hosseini, S. M., Assarehzadegan, M. A., Khosravi‐Darani, K., Hosseini, H. (2020). Safety assays and nutritional values of mycoprotein produced by Fusarium venenatum IR372C from date waste as substrate. Journal of the Science of Food and Agriculture, 100(12): 4433-4441, doi: 10.1002/jsfa.10483.
  • Hashempour‐Baltork, F., Jannat, B., Dadgarnejad, M., Mirza Alizadeh, A., Khosravi‐Darani, K., Hosseini, H. (2023). Mycoprotein as chicken meat substitute in nugget formulation: physicochemical and sensorial characterization. Food Science & Nutrition, 11: 4289-4295, doi: 10.1002/fsn3.3354.
  • Hyde, K. D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A. G. T., Abeywickrama, P. D., Aluthmuhandiram, J. V. S., Brahamanage, R. S., Brooks, S. , Chaiyasen, A. ...... (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97: 1-136.
  • Karimi, S., Mahboobi Soofiani, N., Mahboubi, A., Taherzadeh, M. J. (2018). Use of organic wastes and industrial by-products to produce filamentous fungi with potential as aqua-feed ingredients. Sustainability, 10(9): 3296, doi: 10.3390/su10093296.
  • Kim, K. M., Lim, J., Lee, J. J., Hurh, B. S., Lee, I. (2017). Characterization of Aspergillus sojae isolated from Meju, Korean traditional fermented soybean brick. Journal of Microbiology and Biotechnology, 27(2): 251-261, doi: 10.4014/jmb.1610.10013.
  • Lonchamp, J., Stewart, K., Munialo, C. D., Evans, L., Akintoye, M., Gordon, S., Euston, S. R. (2022). Mycoprotein as novel functional ingredient: mapping of functionality, composition and structure throughout the Quorn fermentation process. Food Chemistry, 396: 133736, doi: 10.1016/j.foodchem.2022.133736.
  • Lübeck, M., Lübeck, P. S. (2022). Fungal cell factories for efficient and sustainable production of proteins and peptides. Microorganisms, 10(4): 753, doi: 10.3390/microorganisms10040753.
  • Mahboubi, A., Ferreira, J. A., Taherzadeh, M. J., Lennartsson, P. R. (2017a). Value-added products from dairy waste using edible fungi. Waste Management, 59: 518-525, doi: 10.1016/j.wasman.2016.11.017.
  • Mahboubi, A., Ferreira, J. A., Taherzadeh, M. J., Lennartsson, P. R. (2017b). Production of fungal biomass for feed, fatty acids, and glycerol by Aspergillus oryzae from fat-rich dairy substrates. Fermentation, 3(4): 48, doi: 10.3390/fermentation3040048.
  • Mccarthy, T. C., Sinal, C. J. (2005). Biotransformation. In: Enclyopedia of Toxicology (Second Edition), Wexler, P. (chief ed.), Academic Press, the USA, pp. 299-312.
  • Meini, M. R., Cabezudo, I., Galetto, C. S., Romanini, D. (2021). Production of grape pomace extracts with enhanced antioxidant and prebiotic activities through solid-state fermentation by Aspergillus niger and Aspergillus oryzae. Food Bioscience, 42: 101168, doi: 10.1016/j.fbio.2021.101168.
  • Mousavi, S. N., Parchami, M., Ramamoorthy, S. K., Soufiani, A. M., Hakkarainen, M., Zamani, A. (2023). Bioconversion of carrot pomace to value-added products: Rhizopus delemar fungal biomass and cellulose. Fermentation, 9(4): 374, doi: 10.3390/fermentation9040374.
  • Odinot, E., Fine, F., Sigoillot, J. C., Navarro, D., Laguna, O., Bisotto, A., Lomascolo, A. (2017). A two-step bioconversion process for canolol production from rapeseed meal combining an Aspergillus niger feruloyl esterase and the fungus Neolentinus lepideus. Microorganisms, 5(4): 67, doi: 10.3390/microorganisms5040067.
  • Rousta, N., Ferreira, J. A., Taherzadeh, M. J. (2021). Production of L-carnitine-enriched edible filamentous fungal biomass through submerged cultivation. Bioengineered, 12(1): 358-368, doi: https://doi.org/10.1080/21655979.2020.1863618.
  • Rousta, N., Larsson, K., Fristedt, R., Undeland, I., Agnihotri, S., Taherzadeh, M. J. (2022). Production of fungal biomass from oat flour for the use as a nutritious food source. NFS Journal, 29: 8-15, doi: 10.1016/j.nfs.2022.09.001.
  • Saeed, F., Afzaal, M., Khalid, A., Shah, Y. A., Ateeq, H., Islam, F., Shah, M. A. (2023). Role of mycoprotein as a non-meat protein in food security and sustainability: A review. International Journal of Food Properties, 26(1): 683-695, doi: 10.1080/10942912.2023.2178456.
  • Schweiggert-Weisz, U., Eisner, P., Bader-Mittermaier, S., Osen, R. (2020). Food proteins from plants and fungi. Current Opinion in Food Science, 32: 156-162, doi: 10.1016/j.cofs.2020.08.003.
  • Slama, N., Mankai, H., Limam, F. (2021). Streptomyces tunisiensis DSM 42037 mediated bioconversion of ferulic acid released from barley bran. World Journal of Microbiology and Biotechnology, 37: 1-10, doi: 10.1007/s11274-021-03031-4.
  • Souza Filho, P. F., Andersson, D., Ferreira, J. A., Taherzadeh, M. J. (2019). Mycoprotein: environmental impact and health aspects. World Journal of Microbiology and Biotechnology, 35(10), 147, doi.org/10.1007/s11274-019-2723-9.
  • Souza Filho, P. F., Nair, R. B., Andersson, D., Lennartsson, P. R., Taherzadeh, M. J. (2018). Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi. Fungal Biology and Biotechnology, 5(1): 1-10, doi: 10.1186/s40694-018-0050-9.
  • Stoffel, F., de Oliveira Santana, W., Gregolon, J. G. N., Kist, T. B. L., Fontana, R. C., Camassola, M. (2019). Production of edible mycoprotein using agroindustrial wastes: Influence on nutritional, chemical and biological properties. Innovative Food Science & Emerging Technologies, 58: 102227, doi: 10.1016/ j.ifset.2019.102227.
  • Strong, P. J., Self, R., Allikian, K., Szewczyk, E., Speight, R., O’Hara, I., Harrison, M. D. (2022). Filamentous fungi for future functional food and feed. Current Opinion in Biotechnology, 76: 102729, doi: 10.1016/j.copbio.2022.102729.
  • Svensson, S. E., Bucuricova, L., Ferreira, J. A., Souza Filho, P. F., Taherzadeh, M. J., Zamani, A. (2021). Valorization of bread waste to a fiber-and protein-rich fungal biomass. Fermentation, 7(2): 91, doi: 10.3390/fermentation7020091.
  • Thunuguntla, R., Mahboubi, A., Ferreira, J. A., Taherzadeh, M. J. (2018). Integration of membrane bioreactors with edible filamentous fungi for valorization of expired milk. Sustainability, 10(6): 1940, doi: 10.3390/su10061940.
  • Tong, S., Chen, W., Hong, R., Chai, M., Sun, Y., Wang, Q., Li, D. (2023). Efficient mycoprotein production with low CO2 emissions through metabolic engineering and fermentation optimization of Fusarium venenatum. Journal of Agricultural and Food Chemistry, 72, 604-612, doi: 10.1021/acs.jafc.3c08509.
  • Upcraft, T., Tu, W. C., Johnson, R., Finnigan, T., Van Hung, N., Hallett, J., Guo, M. (2021). Protein from renewable resources: mycoprotein production from agricultural residues. Green Chemistry, 23(14): 5150-5165, doi: 10.1039/ d1gc01021b.
  • Vongsangnak, W., Nielsen, J. (2013). Systems biology methods and developments of filamentous fungi in relation to the production of food ingredients. In: Microbial Production of Food Ingredients, Enzymes and Nutraceuticals, McNeil, B., Archer, D., Giavasis, I., Harvey, L. (chief ed.), Woodhead Publishing, Sawston, the UK, pp. 19-41.
  • Wang, R., Sar, T., Mahboubi, A., Fristedt, R., Taherzadeh, M. J., Undeland, I. (2023). In vitro protein digestibility of edible filamentous fungi compared to common food protein sources. Food Bioscience, 54: 102862, doi: 10.1016/ j.fbio.2023.102862.
  • Wang, S. K., Yang, K. X., Zhu, Y. R., Zhu, X. Y., Nie, D. F., Jiao, N., Angelidaki, I. (2022). One-step co-cultivation and flocculation of microalgae with filamentous fungi to valorize starch wastewater into high-value biomass. Bioresource Technology, 361: 127625, doi: 10.1016/ j.biortech.2022.127625.
  • Wang, D., Wang, L. J., Zhu, F. X., Zhu, J. Y., Chen, X. D., Zou, L., Saito, M. (2008). In vitro and in vivo studies on the antioxidant activities of the aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food). Food Chemistry, 107(4): 1421-1428, doi: 10.1016/ j.foodchem.2007.09.072.
  • Wei, G., Chitrakar, B., Regenstein, J. M., Sang, Y., Zhou, P. (2023). Microbiology, flavor formation, and bioactivity of fermented soybean curd (furu): A review. Food Research International, 163: 112183, doi: 10.1016/j.foodres.2022.112183.
  • Wikandari, R., Hasniah, N., Taherzadeh, M. J. (2022). The role of filamentous fungi in advancing the development of a sustainable circular bioeconomy. Bioresource Technology, 345: 126531, doi: 10.3390/molecules28030997.
  • Wösten, H. A. (2019). Filamentous fungi for the production of enzymes, chemicals and materials. Current Opinion in Biotechnology, 59: 65-70, doi: 10.1016/j.copbio.2019.02.010.
  • Yafetto, L. (2022). Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon, 8: e09173, doi: 10.1016/j.heliyon.2022.e09173.
  • Yang, M., Ashraf, J., Tong, L., Wang, L., Zhang, X., Li, N., Liu, L. (2021). Effects of Rhizopus oryzae and Aspergillus oryzae on prebiotic potentials of rice bran pretreated with superheated steam in an in vitro fermentation system. LWT-Food Science and Technology, 139: 110482, doi: 10.1016/ j.lwt.2020.110482.
  • Yasuda, M., Tachibana, S., Kuba-Miyara, M. (2012). Biochemical aspects of red koji and tofuyo prepared using Monascus fungi. Applied microbiology and biotechnology, 96: 49-60, doi: 10.1007/s00253-012-4300-0.
  • Zeng, X., Tang, Z., Zhang, W., He, L., Deng, L., Ye, C., Fan, J. (2020). Effect of red koji as a Starter Culture in “Wanergao”: A Traditional Fermented Food in China. Food Science & Nutrition, 8(10): 5580-5590, doi: 10.1002/fsn3.1849.
  • Zepka, L. Q., Jacob-Lopes, E., Goldbeck, R., Souza-Soares, L. A., Queiroz, M. I. (2010). Nutritional evaluation of single-cell protein produced by Aphanothece microscopica Nägeli. Bioresource Technology, 101(18): 7107-7111, doi: doi.org/10.1016/j.biortech.2010.04.001.
  • Zhang, X., Zeng, Y., Liu, J., Men, Y., Sun, Y. (2023). Effects of three extraction methods on the structural and functional properties of insoluble dietary fibers from mycoprotein. Food Chemistry Advances, 2: 100299, doi: 10.1016/ j.focha.2023.100299.
  • Zheng, L., Zheng, P., Sun, Z., Bai, Y., Wang, J., Guo, X. (2007). Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresource Technology, 98(5): 1115-1119, doi: 10.1016/j.biortech.2006.03.028.

FİLAMENTLİ FUNGUSLARIN (KÜFLERİN) ALTERNATİF BESİN KAYNAĞI OLARAK DEĞERLENDİRİLMESİ

Year 2024, Volume: 49 Issue: 4, 751 - 765, 14.08.2024
https://doi.org/10.15237/gida.GD24027

Abstract

İnsan nüfusu ile artan besin ihtiyacı, gelecekte yeterli besin maddelerini içeren bir diyete erişimi giderek zorlaştıracaktır. Mevcut bitkisel ve hayvansal kaynaklı besinlerin varlığı iklime bağlıdır ve uzun vadede çevreye olumsuz etkileri olmaktadır. Bu nedenle araştırmacılar, sürdürülebilir diyete geçişi kolaylaştırmak ve teşvik etmek amacıyla alternatif kaynak arayışındadırlar. Filamentli funguslar karmaşık substratları parçalayarak değerli ürünlere dönüştürebilmektedir. Fermantasyon yoluyla elde edilen fungus biyokütlesi, protein, enzim, antioksidan madde, vitaminler, mineraller, çoklu doymamış yağ asitleri, organik asit ve lif gibi önemli esasiyel bileşiklerin kaynağıdır. Filamentli bir fungus olan Fusarium venenatum biyokütlesinden üretilen et benzeri dokuya sahip alternatif besin kaynağının en çok bilinen ticari örneği Quorn’dur. Son dönemde yapılan çalışmalar filamentli fungusları kullanarak gıda endüstrisi atık ve yan ürünlerinden katma değeri yüksek ürünler geliştirilmesi ve sürdürülebilirliğin sağlanmasına odaklanmıştır. Bu derleme filamentli funguslar kullanılarak gıda atık veya yan ürünlerinden biyokütle üretimi, bileşimi ve sağlık üzerine etkileri konularında yapılan çalışmaları kapsamaktadır.

References

  • Aruna, T. E. (2019). Production of value-added product from pineapple peels using solid state fermentation. Innovative Food Science & Emerging Technologies, 57: 102193, doi: 10.1016/ j.ifset.2019.102193.
  • Ahmad, M. I., Farooq, S., Alhamoud, Y., Li, C., Zhang, H. (2022). A review on mycoprotein: History, nutritional composition, production methods, and health benefits. Trends in Food Science & Technology, 121: 14-29, doi: 10.1016/ j.tifs.2022.01.027.
  • Amara, A. A., El-Baky, N. A. (2023). Fungi as a source of edible proteins and animal feed. Journal of Fungi, 9(1): 73, doi: 10.3390/jof9010073.
  • Atta-Delgado, M. X., Lozano, S. P. G., Torres, J. A. (2023). A survey on the prevalence of sustainable diets and the eating experience satisfaction. Innovative Food Science & Emerging Technologies, 84: 103305, doi: 10.1016/ j.ifset.2023.103305.
  • Awasthi, M. K., Kumar, V., Hellwig, C., Wikandari, R., Harirchi, S., Sar, T., Taherzadeh, M. J. (2022). Filamentous fungi for sustainable vegan food production systems within a circular economy: Present status and future prospects. Food Research International, 164: 112318, doi: 10.1016/j.foodres.2022.112318.
  • Barnharst, T., Sun, X., Rajendran, A., Urriola, P., Shurson, G., Hu, B. (2021). Enhanced protein and amino acids of corn–ethanol co-product by Mucor indicus and Rhizopus oryzae. Bioprocess and Biosystems Engineering, 44(9): 1989-2000, doi: 10.1007/ s00449-021-02580-0.
  • Barzee, T. J., Cao, L., Pan, Z., Zhang, R. (2021). Fungi for future foods. Journal of Future Foods, 1(1): 25-37, doi: 10.1016/j.jfutfo.2021.09.002.
  • Borujeni, N. E., Karimi, K., Denayer, J. F., Kumar, R. (2022). Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by Mucor indicus. Energy, 240: 122469, doi: 10.1016/ j.energy.2021.122469.
  • Braho, V., Sar, T., Taherzadeh, M. J. (2023). Cultivation of edible filamentous fungi on pomegranate by-products as feedstocks to produce mycoprotein. Systems Microbiology and Biomanufacturing, 1-12, doi: 10.1007/s43393-023-00212-0.
  • Cherta-Murillo, A., Danckert, N. P., Valdivia-Garcia, M., Chambers, E. S., Roberts, L., Miguens-Blanco, J., Frost, G. S. (2023). Gut microbiota fermentation profiles of pre-digested mycoprotein (Quorn) using faecal batch cultures in vitro: a preliminary study. International Journal of Food Sciences and Nutrition, 74(3): 327-337, doi: 10.1080/09637486.2023.2216404.
  • Colosimo, R., Mulet-Cabero, A. I., Cross, K. L., Haider, K., Edwards, C. H., Warren, F. J., Finnigan, T. J. A., Wilde, P. J. (2021). β-glucan release from fungal and plant cell walls after simulated gastrointestinal digestion. Journal of Functional Foods, 83: 104543, doi: 10.1016/ j.jff.2021.104543.
  • Copetti, M. V. (2019). Fungi as industrial producers of food ingredients. Current Opinion in Food Science, 25: 52-56, doi: 10.1016/ j.cofs.2019.02.006.
  • de Lima, T. M., de Almeida, A. B., Peres, D. S., de Sousa, T. L., de Freitas, B. S. M., Silva, F. G., Egea, M. B. (2021). Rhizopus oligosporus as a biotransforming microorganism of Anacardium othonianum Rizz. byproduct for production of high -protein, -antioxidant, and -fiber ingredient. LWT- Food Science and Technology, 135: 110030, doi: 10.1016/j.lwt.2020.110030.
  • Derbyshire, E. J., Delange, J. (2021). Fungal protein–what is it and what is the health evidence? A systematic review focusing on mycoprotein. Frontiers in Sustainable Food Systems, 5: 581682, doi: 10.3389/ fsufs.2021.581682.
  • Derbyshire, E. J., Theobald, H., Wall, B. T., Stephens, F. (2023). Food for our future: the nutritional science behind the sustainable fungal protein-mycoprotein. A symposium review. Journal of Nutritional Science, 12(e44): 1-6, doi:10.1017/jns.2023.29.
  • Dunlop, M. V., Kilroe, S. P., Bowtell, J. L., Finnigan, T. J., Salmon, D. L., Wall, B. T. (2017). Mycoprotein represents a bioavailable and insulinotropic non-animal-derived dietary protein source: a dose–response study. British Journal of Nutrition, 118(9): 673-685, doi: 10.1017/ S0007114517002409.
  • Dzurendová, S., Shapaval, V., Tafintseva, V., Kohler, A., Byrtusová, D., Szotkowski, M., Immermann, B. (2021). Assessment of biotechnologically important filamentous fungal biomass by Fourier Transform Raman Spectroscopy. International Journal of Molecular Sciences, 22(13): 6710, doi: 10.3390/ijms22136710.
  • EC, (2008). Commission Directive 2008/100/EC of 28 October 2008 amending council directive 90/496/EEC on nutrition labelling for foodstuffs as regards recommended daily allowances, energy conversion factors and definitions. Official Journal of European Union 38: 208–211.
  • Elango, R., Laviano, A. (2019). From old to new: roles of protein sources and individual amino acids in clinical nutrition. Current Opinion in Clinical Nutrition & Metabolic Care, 22(1): 58-59, doi: 10.1097/MCO.0000000000000532.
  • El-Enshasy, H. A. (2007). Filamentous fungal cultures–process characteristics, products, and applications. In: Bioprocessing for Value-added Products from Renewable Resources, McNeil B., Archer, D., Giavasis I., Harvey L. (chief ed.), Elsevier Science, Amsterdam, Netherlands, pp. 225-261.
  • Ezekiel, O. O., Aworh, O. C., Blaschek, H. P., Ezeji, T. C. (2010). Protein enrichment of cassava peel by submerged fermentation with Trichoderma viride (ATCC 36316). African Journal of Biotechnology, 9(2): 117-122.
  • Finnigan, T., Needham, L., Abbott, C. (2016). Mycoprotein: A Healthy New Protein With a Low Environmental Impact. In: Sustainable Protein Sources, Nadathur, S., Scanlin, L. (chief ed.), Academic Press, Cambridge, the US, pp. 305-323.
  • Gastaldello, A., Giampieri, F., De Giuseppe, R., Grosso, G., Baroni, L., Battino, M. (2022). The rise of processed meat alternatives: A narrative review of the manufacturing, composition, nutritional profile and health effects of newer sources of protein, and their place in healthier diets. Trends in Food Science & Technology, 127: 263-271, doi: 10.1016/j.tifs.2022.07.005.
  • Giavasis, I., Seviour, R. J., Hudman, P., McNeil, B. (2019). Fungal bioproducts for use in food: polysaccharides, organic acids, and mycoprotein. In: Advances in Food Bioproducts and Bioprocessing Technologies, Chavez-Gonzalez, M. L., Balagurusamy, N., Aguilar, C. (chief ed.), CRC press, Florida, the ABD, pp 511-548.
  • Gibbs, J., Leung, G. K. (2023). The effect of plant-based and mycoprotein-based meat substitute consumption on cardiometabolic risk factors: a systematic review and meta-analysis of controlled ıntervention trials. Dietetics, 2(1): 104-122, doi: 10.3390/dietetics2010009.
  • Gmoser, R., Sintca, C., Taherzadeh, M. J., Lennartsson, P. R. (2019). Combining submerged and solid state fermentation to convert waste bread into protein and pigment using the edible filamentous fungus Neurospora intermedia. Waste Management, 97: 63-70, doi: 10.3390/ fermentation4010011.
  • Gulsunoglu Konuskan, Z., Kilic Akyilmaz, M. (2022). Microbial bioconversion of phenolic compounds in agro-industrial wastes: a review of mechanisms and effective factors. Journal of Agricultural and Food Chemistry, 70(23): 6901-6910 doi: 10.1016/j.bcab.2020.101562.
  • Harris, H. C., Edwards, C. A., Morrison, D. J. (2019). Short chain fatty acid production from mycoprotein and mycoprotein fibre in an in vitro fermentation model. Nutrients, 11(4): 800, doi: 10.3390/nu11040800.
  • Hashempour‐Baltork, F., Hosseini, S. M., Assarehzadegan, M. A., Khosravi‐Darani, K., Hosseini, H. (2020). Safety assays and nutritional values of mycoprotein produced by Fusarium venenatum IR372C from date waste as substrate. Journal of the Science of Food and Agriculture, 100(12): 4433-4441, doi: 10.1002/jsfa.10483.
  • Hashempour‐Baltork, F., Jannat, B., Dadgarnejad, M., Mirza Alizadeh, A., Khosravi‐Darani, K., Hosseini, H. (2023). Mycoprotein as chicken meat substitute in nugget formulation: physicochemical and sensorial characterization. Food Science & Nutrition, 11: 4289-4295, doi: 10.1002/fsn3.3354.
  • Hyde, K. D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A. G. T., Abeywickrama, P. D., Aluthmuhandiram, J. V. S., Brahamanage, R. S., Brooks, S. , Chaiyasen, A. ...... (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97: 1-136.
  • Karimi, S., Mahboobi Soofiani, N., Mahboubi, A., Taherzadeh, M. J. (2018). Use of organic wastes and industrial by-products to produce filamentous fungi with potential as aqua-feed ingredients. Sustainability, 10(9): 3296, doi: 10.3390/su10093296.
  • Kim, K. M., Lim, J., Lee, J. J., Hurh, B. S., Lee, I. (2017). Characterization of Aspergillus sojae isolated from Meju, Korean traditional fermented soybean brick. Journal of Microbiology and Biotechnology, 27(2): 251-261, doi: 10.4014/jmb.1610.10013.
  • Lonchamp, J., Stewart, K., Munialo, C. D., Evans, L., Akintoye, M., Gordon, S., Euston, S. R. (2022). Mycoprotein as novel functional ingredient: mapping of functionality, composition and structure throughout the Quorn fermentation process. Food Chemistry, 396: 133736, doi: 10.1016/j.foodchem.2022.133736.
  • Lübeck, M., Lübeck, P. S. (2022). Fungal cell factories for efficient and sustainable production of proteins and peptides. Microorganisms, 10(4): 753, doi: 10.3390/microorganisms10040753.
  • Mahboubi, A., Ferreira, J. A., Taherzadeh, M. J., Lennartsson, P. R. (2017a). Value-added products from dairy waste using edible fungi. Waste Management, 59: 518-525, doi: 10.1016/j.wasman.2016.11.017.
  • Mahboubi, A., Ferreira, J. A., Taherzadeh, M. J., Lennartsson, P. R. (2017b). Production of fungal biomass for feed, fatty acids, and glycerol by Aspergillus oryzae from fat-rich dairy substrates. Fermentation, 3(4): 48, doi: 10.3390/fermentation3040048.
  • Mccarthy, T. C., Sinal, C. J. (2005). Biotransformation. In: Enclyopedia of Toxicology (Second Edition), Wexler, P. (chief ed.), Academic Press, the USA, pp. 299-312.
  • Meini, M. R., Cabezudo, I., Galetto, C. S., Romanini, D. (2021). Production of grape pomace extracts with enhanced antioxidant and prebiotic activities through solid-state fermentation by Aspergillus niger and Aspergillus oryzae. Food Bioscience, 42: 101168, doi: 10.1016/j.fbio.2021.101168.
  • Mousavi, S. N., Parchami, M., Ramamoorthy, S. K., Soufiani, A. M., Hakkarainen, M., Zamani, A. (2023). Bioconversion of carrot pomace to value-added products: Rhizopus delemar fungal biomass and cellulose. Fermentation, 9(4): 374, doi: 10.3390/fermentation9040374.
  • Odinot, E., Fine, F., Sigoillot, J. C., Navarro, D., Laguna, O., Bisotto, A., Lomascolo, A. (2017). A two-step bioconversion process for canolol production from rapeseed meal combining an Aspergillus niger feruloyl esterase and the fungus Neolentinus lepideus. Microorganisms, 5(4): 67, doi: 10.3390/microorganisms5040067.
  • Rousta, N., Ferreira, J. A., Taherzadeh, M. J. (2021). Production of L-carnitine-enriched edible filamentous fungal biomass through submerged cultivation. Bioengineered, 12(1): 358-368, doi: https://doi.org/10.1080/21655979.2020.1863618.
  • Rousta, N., Larsson, K., Fristedt, R., Undeland, I., Agnihotri, S., Taherzadeh, M. J. (2022). Production of fungal biomass from oat flour for the use as a nutritious food source. NFS Journal, 29: 8-15, doi: 10.1016/j.nfs.2022.09.001.
  • Saeed, F., Afzaal, M., Khalid, A., Shah, Y. A., Ateeq, H., Islam, F., Shah, M. A. (2023). Role of mycoprotein as a non-meat protein in food security and sustainability: A review. International Journal of Food Properties, 26(1): 683-695, doi: 10.1080/10942912.2023.2178456.
  • Schweiggert-Weisz, U., Eisner, P., Bader-Mittermaier, S., Osen, R. (2020). Food proteins from plants and fungi. Current Opinion in Food Science, 32: 156-162, doi: 10.1016/j.cofs.2020.08.003.
  • Slama, N., Mankai, H., Limam, F. (2021). Streptomyces tunisiensis DSM 42037 mediated bioconversion of ferulic acid released from barley bran. World Journal of Microbiology and Biotechnology, 37: 1-10, doi: 10.1007/s11274-021-03031-4.
  • Souza Filho, P. F., Andersson, D., Ferreira, J. A., Taherzadeh, M. J. (2019). Mycoprotein: environmental impact and health aspects. World Journal of Microbiology and Biotechnology, 35(10), 147, doi.org/10.1007/s11274-019-2723-9.
  • Souza Filho, P. F., Nair, R. B., Andersson, D., Lennartsson, P. R., Taherzadeh, M. J. (2018). Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi. Fungal Biology and Biotechnology, 5(1): 1-10, doi: 10.1186/s40694-018-0050-9.
  • Stoffel, F., de Oliveira Santana, W., Gregolon, J. G. N., Kist, T. B. L., Fontana, R. C., Camassola, M. (2019). Production of edible mycoprotein using agroindustrial wastes: Influence on nutritional, chemical and biological properties. Innovative Food Science & Emerging Technologies, 58: 102227, doi: 10.1016/ j.ifset.2019.102227.
  • Strong, P. J., Self, R., Allikian, K., Szewczyk, E., Speight, R., O’Hara, I., Harrison, M. D. (2022). Filamentous fungi for future functional food and feed. Current Opinion in Biotechnology, 76: 102729, doi: 10.1016/j.copbio.2022.102729.
  • Svensson, S. E., Bucuricova, L., Ferreira, J. A., Souza Filho, P. F., Taherzadeh, M. J., Zamani, A. (2021). Valorization of bread waste to a fiber-and protein-rich fungal biomass. Fermentation, 7(2): 91, doi: 10.3390/fermentation7020091.
  • Thunuguntla, R., Mahboubi, A., Ferreira, J. A., Taherzadeh, M. J. (2018). Integration of membrane bioreactors with edible filamentous fungi for valorization of expired milk. Sustainability, 10(6): 1940, doi: 10.3390/su10061940.
  • Tong, S., Chen, W., Hong, R., Chai, M., Sun, Y., Wang, Q., Li, D. (2023). Efficient mycoprotein production with low CO2 emissions through metabolic engineering and fermentation optimization of Fusarium venenatum. Journal of Agricultural and Food Chemistry, 72, 604-612, doi: 10.1021/acs.jafc.3c08509.
  • Upcraft, T., Tu, W. C., Johnson, R., Finnigan, T., Van Hung, N., Hallett, J., Guo, M. (2021). Protein from renewable resources: mycoprotein production from agricultural residues. Green Chemistry, 23(14): 5150-5165, doi: 10.1039/ d1gc01021b.
  • Vongsangnak, W., Nielsen, J. (2013). Systems biology methods and developments of filamentous fungi in relation to the production of food ingredients. In: Microbial Production of Food Ingredients, Enzymes and Nutraceuticals, McNeil, B., Archer, D., Giavasis, I., Harvey, L. (chief ed.), Woodhead Publishing, Sawston, the UK, pp. 19-41.
  • Wang, R., Sar, T., Mahboubi, A., Fristedt, R., Taherzadeh, M. J., Undeland, I. (2023). In vitro protein digestibility of edible filamentous fungi compared to common food protein sources. Food Bioscience, 54: 102862, doi: 10.1016/ j.fbio.2023.102862.
  • Wang, S. K., Yang, K. X., Zhu, Y. R., Zhu, X. Y., Nie, D. F., Jiao, N., Angelidaki, I. (2022). One-step co-cultivation and flocculation of microalgae with filamentous fungi to valorize starch wastewater into high-value biomass. Bioresource Technology, 361: 127625, doi: 10.1016/ j.biortech.2022.127625.
  • Wang, D., Wang, L. J., Zhu, F. X., Zhu, J. Y., Chen, X. D., Zou, L., Saito, M. (2008). In vitro and in vivo studies on the antioxidant activities of the aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food). Food Chemistry, 107(4): 1421-1428, doi: 10.1016/ j.foodchem.2007.09.072.
  • Wei, G., Chitrakar, B., Regenstein, J. M., Sang, Y., Zhou, P. (2023). Microbiology, flavor formation, and bioactivity of fermented soybean curd (furu): A review. Food Research International, 163: 112183, doi: 10.1016/j.foodres.2022.112183.
  • Wikandari, R., Hasniah, N., Taherzadeh, M. J. (2022). The role of filamentous fungi in advancing the development of a sustainable circular bioeconomy. Bioresource Technology, 345: 126531, doi: 10.3390/molecules28030997.
  • Wösten, H. A. (2019). Filamentous fungi for the production of enzymes, chemicals and materials. Current Opinion in Biotechnology, 59: 65-70, doi: 10.1016/j.copbio.2019.02.010.
  • Yafetto, L. (2022). Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon, 8: e09173, doi: 10.1016/j.heliyon.2022.e09173.
  • Yang, M., Ashraf, J., Tong, L., Wang, L., Zhang, X., Li, N., Liu, L. (2021). Effects of Rhizopus oryzae and Aspergillus oryzae on prebiotic potentials of rice bran pretreated with superheated steam in an in vitro fermentation system. LWT-Food Science and Technology, 139: 110482, doi: 10.1016/ j.lwt.2020.110482.
  • Yasuda, M., Tachibana, S., Kuba-Miyara, M. (2012). Biochemical aspects of red koji and tofuyo prepared using Monascus fungi. Applied microbiology and biotechnology, 96: 49-60, doi: 10.1007/s00253-012-4300-0.
  • Zeng, X., Tang, Z., Zhang, W., He, L., Deng, L., Ye, C., Fan, J. (2020). Effect of red koji as a Starter Culture in “Wanergao”: A Traditional Fermented Food in China. Food Science & Nutrition, 8(10): 5580-5590, doi: 10.1002/fsn3.1849.
  • Zepka, L. Q., Jacob-Lopes, E., Goldbeck, R., Souza-Soares, L. A., Queiroz, M. I. (2010). Nutritional evaluation of single-cell protein produced by Aphanothece microscopica Nägeli. Bioresource Technology, 101(18): 7107-7111, doi: doi.org/10.1016/j.biortech.2010.04.001.
  • Zhang, X., Zeng, Y., Liu, J., Men, Y., Sun, Y. (2023). Effects of three extraction methods on the structural and functional properties of insoluble dietary fibers from mycoprotein. Food Chemistry Advances, 2: 100299, doi: 10.1016/ j.focha.2023.100299.
  • Zheng, L., Zheng, P., Sun, Z., Bai, Y., Wang, J., Guo, X. (2007). Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresource Technology, 98(5): 1115-1119, doi: 10.1016/j.biortech.2006.03.028.
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Food Biotechnology
Journal Section Articles
Authors

Burcu Kaya 0000-0003-1755-7705

Yonca Yuceer 0000-0002-9028-2923

Publication Date August 14, 2024
Submission Date February 14, 2024
Acceptance Date August 5, 2024
Published in Issue Year 2024 Volume: 49 Issue: 4

Cite

APA Kaya, B., & Yuceer, Y. (2024). FİLAMENTLİ FUNGUSLARIN (KÜFLERİN) ALTERNATİF BESİN KAYNAĞI OLARAK DEĞERLENDİRİLMESİ. Gıda, 49(4), 751-765. https://doi.org/10.15237/gida.GD24027
AMA Kaya B, Yuceer Y. FİLAMENTLİ FUNGUSLARIN (KÜFLERİN) ALTERNATİF BESİN KAYNAĞI OLARAK DEĞERLENDİRİLMESİ. The Journal of Food. August 2024;49(4):751-765. doi:10.15237/gida.GD24027
Chicago Kaya, Burcu, and Yonca Yuceer. “FİLAMENTLİ FUNGUSLARIN (KÜFLERİN) ALTERNATİF BESİN KAYNAĞI OLARAK DEĞERLENDİRİLMESİ”. Gıda 49, no. 4 (August 2024): 751-65. https://doi.org/10.15237/gida.GD24027.
EndNote Kaya B, Yuceer Y (August 1, 2024) FİLAMENTLİ FUNGUSLARIN (KÜFLERİN) ALTERNATİF BESİN KAYNAĞI OLARAK DEĞERLENDİRİLMESİ. Gıda 49 4 751–765.
IEEE B. Kaya and Y. Yuceer, “FİLAMENTLİ FUNGUSLARIN (KÜFLERİN) ALTERNATİF BESİN KAYNAĞI OLARAK DEĞERLENDİRİLMESİ”, The Journal of Food, vol. 49, no. 4, pp. 751–765, 2024, doi: 10.15237/gida.GD24027.
ISNAD Kaya, Burcu - Yuceer, Yonca. “FİLAMENTLİ FUNGUSLARIN (KÜFLERİN) ALTERNATİF BESİN KAYNAĞI OLARAK DEĞERLENDİRİLMESİ”. Gıda 49/4 (August 2024), 751-765. https://doi.org/10.15237/gida.GD24027.
JAMA Kaya B, Yuceer Y. FİLAMENTLİ FUNGUSLARIN (KÜFLERİN) ALTERNATİF BESİN KAYNAĞI OLARAK DEĞERLENDİRİLMESİ. The Journal of Food. 2024;49:751–765.
MLA Kaya, Burcu and Yonca Yuceer. “FİLAMENTLİ FUNGUSLARIN (KÜFLERİN) ALTERNATİF BESİN KAYNAĞI OLARAK DEĞERLENDİRİLMESİ”. Gıda, vol. 49, no. 4, 2024, pp. 751-65, doi:10.15237/gida.GD24027.
Vancouver Kaya B, Yuceer Y. FİLAMENTLİ FUNGUSLARIN (KÜFLERİN) ALTERNATİF BESİN KAYNAĞI OLARAK DEĞERLENDİRİLMESİ. The Journal of Food. 2024;49(4):751-65.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/