Conference Paper
BibTex RIS Cite

Candida Mikroorganizmalarının Polimerik Yüzeylere Yapışmasının İncelenmesi

Year 2018, Volume: 4 Issue: 3, 157 - 167, 24.12.2018

Abstract

Bir malzeme yüzeyi üzerindeki mikroorganizma adezyonu
biyomedikal cihazlar, implantlar, ilaç salım sistemleri, yapı iskeleleri v.b.
uygulamalarda kritik önem taşır. Biyoaktif, biyoinert, biyolojik kirlenmeyi
önleyici özelliklere sahip olması istenen yüzeyler, spesifik bileşiklerin bu
yüzeyler üzerine fiziksel adsorpsiyonu 
ya da kimyasal modifikasyon ile hazırlanabilirler. Mikro/nano desenli
yüzey üretimi yüzey modifikasyon yollarının en önemli olanlarından biridir.
Çalışmalar ıslatılabilirlik (hidrofilisite/hidrofobisite), bir yüzeyin
karakteri, yüzey yükü, serbest yüzey enerjisi ve yüzey pürüzlülüğü gibi yüzey
özelliklerinin malzeme yüzeylerine olan mikroorganizma adezyonunu etkilediğini
ortaya koymaktadır.

 





Bu çalışmanın amacı polimerik materyallerin yüzey
özellikleri ile medikal alanda fırsatçı patojenler olarakta bilinen ve sistemik
mantar enfeksiyonlarının başlıca sebebi olan Candida mikroorganizmalarının
adezyonu arasındaki ilişkiyi incelemektir.

References

  • [1] Tournu H. and Van Dijck P. Candida biofilms and the host: models and new concepts for eradication. International Journal of Microbiology, 2012, 2012: 1-16. DOI: 10.1155/2012/845352
  • [2] Donlan R. M. and Costerton J. W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 2002, 15: 167-193. DOI: 10.1128/CMR.15.2.167-193.2002
  • [3] Bothwell M. R., Smith A. L. and Phillips T. Recalcitrant otorrhea due to Pseudomonas biofilm. Otolaryngology- Head and Neck Surgery, 2003, 129: 599-601. DOI: 10.1016/S0194-5998(03)01395-0
  • [4] Post J. C., Hiller N. L., Nistico L., Stoodley P. and Ehrlich G. D. The role of biofilms in otolaryngologic infections: update 2007. Current Opinion in Otolaryngology and Head and Neck Surgery, 2007, 15: 347-351. DOI: 10.1097/MOO.0b013e3282b97327
  • [5] Ramage G., VandeWalle K., Wickes B. L. and López–Ribot J. L. Characteristics of biofilm formation by Candida albicans. Revista Iberoamericana De Micologia, 2001, 18: 163-170.
  • [6] Andes D., Nett J., Oschel P., Albrecht R., Marchillo K. and Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infection and Immunity, 2004, 72: 6023-6031. DOI: 10.1128/IAI.72.10.6023–6031.2004
  • [7] Rodrigues L. R., Banat I. M., van der Mei H. C., Teixeira J. A. and Oliveira R. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. Journal of Applied Microbiology, 2006, 100: 470-480. DOI: 10.1111/j.1365-2672.2005.02826.x
  • [8] Imamura Y., Chandra J., Mukherjee P. K., Lattif A. A., Szczotka-Flynn L. B., Pearlman E., Lass J. H., O’Donnell K. and Ghannoum M. A. Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type, and susceptibility to lens care solutions. Antimicrobial Agents and Chemotherapy, 2008, 52: 171-182. DOI: 10.1128/AAC.00387-07
  • [9] Chatterjee S., Maiti P. K., Dey R., Kundu A. K. and Dey R. K. Biofilms on indwelling urologic devices: microbes and antimicrobial management prospect. Annals of Medical and Health Sciences Research, 2014, 4: 100-104. DOI: 10.4103/2141-9248.126612
  • [10] Jones H. C., Roth I. L. and Sanders W. M. Electron microscopic study of a slime layer. Journal of Bacteriology, 1969, 99: 316-325.
  • [11] Marsh P. D. Dental plaque, Microbial biofilms. Cambridge University Press, Cambridge, 1995.
  • [12] Rather P. N. Swarmer cell differentiation in proteus mirabilis. Environmental Microbiology, 2005, 7: 1065-1073. DOI: 10.1111/j.1462-2920.2005.00806.x
  • [13] Altun H. U. and Sener B. Biofilm infections and antimicrobial resistance. Hacettepe Tıp Dergisi, 2008, 39: 82-88.
  • [14] Potera C. Microbiology: Forging a link between biofilms and disease. Science, 1999, 283: 1837-1839. DOI: 10.1126/science.283.5409.1837
  • [15] Lindsay D. and von Holy A. Bacterial biofilms within the clinical setting: what healthcare professionals should know. Journal of Hospital Infection, 2006, 64: 313-325. DOI: 10.1016/j.jhin.2006.06.028
  • [16] Kumamoto C. A. Candida biofilms. Current Opinion in Microbiology, 2002, 5: 608-611. DOI: https://doi.org/10.1016/S1369-5274(02)00371-5
  • [17] Coenye T., De Prijck K., Nailis H. and Nelis H. J. Prevention of Candida albicans biofilm formation. The Open Mycology Journal, 2011, 5: 9-20. DOI: 10.2174/1874437001105010009
  • [18] Winn W. C., Allen S. D., Janda W. M., Koneman E. W., Procop G. W., Schreckenberger P. C. and Woods G. L. Mycology. Koneman's Color Atlas and Textbook of Diagnostic Microbiology. Lippincott Williams & Wilkins, Philadelphia, USA, 2006.
  • [19] Yucel A. and Kantarcioğlu A. S. Epidemiology of hospital acquired (nosocomial) fungal infections. Cerrahpaşa Journal of Medicine, 2001, 32: 259-269.
  • [20] Birinci A., Cihan C. C., Bilgin K., Acuner C. and Durupınar B. The investigation of slime production in Candida species. Türk Mikrobiyoloji Cemiyeti Dergisi, 2005, 35: 163-166.
  • [21] Cannon R. D. and Chaffin W. L. Oral colonization by Candida albicans. Critical Reviews in Oral Biology and Medicine. 1999, 10: 359-383. DOI: 10.1177/10454411990100030701
  • [22] Kavanagh K., Sullivan D., Moran G. and Coleman D. Fungal diseases of humans. Fungi: Biology and Applications. John Wiley & Sons, Ltd., 2005.
  • [23] Hawser S. P. and Douglas L. J. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infection and Immunity, 1994, 62: 915-921.
  • [24] Chandra J., Patel J. D., Li J., Zhou G., Mukherjee P. K., McCormick T. S., Anderson J. M. and Ghannoum M. A. Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. Applied and Environmental Microbiology, 2005, 71: 8795-8801. DOI: 10.1128/AEM.71.12.8795–8801.2005
  • [25] Jin Y., Samaranayake L. P., Samaranayake Y. and Yip H. K. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Archives of Oral Biology, 2004, 49: 789-798. DOI: 10.1016/j.archoralbio.2004.04.011
  • [26] Krom B. P., Cohen, J. B., McElhaney Feser G. E. and Cihlar R. L. Optimized Candidal biofilm microtiter assay. Journal of Microbiological Methods, 2007, 68: 421-423. DOI: 10.1016/j.mimet.2006.08.003
  • [27] Millsap K. W., Bos R., Busscher H. J. and Van der Mei H. C. Surface aggregation of Candida albicans on glass in the absence and presence of adhering Streptococcus gordoni in a parallel-plate flow chamber: a surface thermodynamical analysis based on acid-base interactions. Journal of Colloid and Interface Science, 1999, 212: 495-502. DOI: 10.1006/jcis.1998.6054
  • [28] Gallardo-Moreno A. M., González-Martín M. L., Pérez-Giraldo C., Bruque J. M. and Gómez-García A. C. The measurement temperature: an important factor relating physicochemical and adhesive properties of yeast cells to biomaterials. Journal of Colloid and Interface Science, 2004, 271: 351-358. DOI: 10.1016/j.jcis.2003.12.008
  • [29] Davey M. E. and O’toole G. A. Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 2000, 64: 847-867. DOI: 10.1128/MMBR.64.4.847-867.2000
  • [30] Donlan R. M. Biofilms: microbial life on surface. Emerging Infectious Diseases, 2002, 8: 881-890. DOI: 10.3201/eid0809.020063
  • [31] Chandra J., Kuhn D. M., Mukherjee P. K., Hoyer L. L., Mccormick T. and Ghannoum M. A. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. Journal of Bacteriology, 2001, 183: 5385-5394. DOI: 10.1128/JB.183.18.5385-5394.2001
  • [32] Blankenship J. R. and Mitchell A. P. How to build a biofilm: a fungal perspective. Current Opinion in Microbiology, 2006, 9: 588-594. DOI: 10.1016/j.mib.2006.10.003
  • [33] ten Cate J. M., Klis F. M., Pereira-Cenci T., Crielaard W. and de Groot P. W. J. Molecular and cellular mechanisms that lead to Candida biofilm formation. Journal of Dental Research, 2009, 88: 105-115. DOI: 10.1177/0022034508329273
  • [34] Darwazeh A. M. G., Lamey P. J., Samaranayake L. P., Macfarlane T. W., Fisher B. M., Macrury S. M. and Maccuish A. C. The relationship between colonisation, secretor status and in-vitro adhesion of Candida albicans to buccal epithelial cells from diabetics. Journal of Medical Microbiology, 1990, 33: 43-49. DOI: 10.1099/00222615-33-1-43
  • [35] Samaranayake Y. H., Wu P. C., Samaranayake L. P. and So M. Relationship between the cell surface hydrophobicity and adherence of Candida krusei and Candida albicans to epithelial and denture acrylic surfaces. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 1995, 103: 707-713. DOI: https://doi.org/10.1111/j.1699-0463.1995.tb01427.x
  • [36] Seneviratne C. J., Jin L. and Samaranayake L. P. Biofilm lifestyle of Candida: a mini review. Oral Diseases, 2008, 14: 582-590. DOI: 10.1111/j.1601-0825.2007.01424.x
  • [37] Cousins B. G., Allison H. E., Doherty P. J., Edwards C., Garvey M. J., Martin D. S. and Williams R. L. Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans. Journal of Applied Microbiology, 2007, 102: 757-765. DOI: 10.1111/j.1365-2672.2006.03124.x
  • [38] Erbil H. Y. Surface chemistry of solid and liquid interfaces. Blackwell, Oxford, UK, 2006.
  • [39] Vladkova T. G. Surface engineering of polymeric biomaterials. iSmithers Rapra Publishing, United Kingdom, 2013.
  • [40] Minagi S., Miyake Y., Inagaki K., Tsuru H. and Suginaka H. Hydrophobic interaction in Candida albicans and Candida tropicalis adherence to various denture base resin materials. Infection and Immunity, 1985, 47: 11-14.
  • [41] Klotz S. A., Drutz D. J. and Zaric J. E. Factors governing adherence of Candida species to plastic surfaces. Infection and Immunity, 1985, 50: 97-101.
  • [42] Nikawa H., Chen, J., Hamada T., Nishumura M. and Polyzois G. Candida albicans colonization on thermal cycled maxillofacial polymeric materials in vitro. Journal of Oral Rehabilitation, 2001, 28: 526-533. DOI: https://doi.org/10.1046/j.1365-2842.2001.00685.x
  • [43] Park S. E., Periathamby A. R. and Loza J. C. Effect of surface-charged poly(methyl methacrylate) on the adhesion of Candida albicans. Journal of Prosthodontics, 2003, 12: 249-254. DOI: 10.1016/S1059-941X(03)00107-4
  • [44] Gallardo-Moreno A. M., Gonzales-Martin M. L., Bruque J. M. and Perez-Giraldo C. The adhesion strength of Candida parapsilosis to glass and silicone as a function of hydrophobicity, roughness and cell morphology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 249: 99-103. DOI: 10.1016/j.colsurfa.2004.08.058
  • [45] Yıldırım M. S., Hasanresioglu U., Hasırcı N. and Sultan N. Adherence of Candida albicans to glow-discharge modified acrylic denture base polymers. Journal of Oral Rehabilitation, 2005, 32: 518-525. DOI: 10.1111/j.1365-2842.2005.01454.x
  • [46] Zhou L., Tong Z., Wu G., Feng Z., Bai S., Dong Y., Ni L. and Zhao Y. Parylene coating hinders Candida albicans adhesion to silicone elastomers and denture bases resin. Archives of Oral Biology, 2010, 55: 401-409. DOI: 10.1016/j.archoralbio.2010.03.013
  • [47] Singh N., Agrawal V., Pemmaraju S. C., Panwar R. and Pruthi V. Impact of infectious Candida albicans biofilm on biomaterials. Indian Journal of Biotechnology, 2011, 10: 417-422.
  • [48] Kang S. H., Lee H. J., Hong S. H., Kim K. H. and Kwon T. Y. Influence of surface characteristics on the adhesion of Candida albicans to various denture lining materials. Acta Odontologica Scandinavica, 2013, 71: 241-248. DOI: 10.3109/00016357.2012.671360
  • [49] Atay A., Piskin B., Akin H., Sipahi C., Karakas A. and Saracli M. A. Evaluation of Candida albicans adherence on the surface of various maxillofacial silicone materials. Journal de Mycologie Médicale, 2013, 23: 27-32. DOI: https://doi.org/10.1016/j.mycmed.2012.12.005
  • [50] Koch C., Bürgers R. and Hahnel S. Candida albicans adherence and proliferation on the surface of denture base materials. Gerodontolojy, 2013, 30: 309-313. DOI: 10.1111/ger.12056
  • [51] Serrano-Granger C., Cerero-Lapiedra R. and Campo-Trapero J. In vitro study of the adherence of Candida albicans to acrylic resins: relationship to surface energy. The International Journal of Prosthodontics, 2005, 18: 392-398.
  • [52] Moura J. S., da Silva W. J., Pereira T., Del Bel Cury A. A. and Rodrigues Garcia R. C. Influence of acrylic resin polymerization methods and saliva on the adherence of four Candida species. The Journal of Prosthetic Dentistry, 2006, 96: 205-211. DOI: 10.1016/j.prosdent.2006.07.004
  • [53] Pereira-Cenci T., Cury A. A., Cenci M. S. and Rodrigues-Garcia R. C. In vitro Candida colonization on acrylic resins and denture liners: influence of surface free energy, roughness, saliva, and adhering bacteria. International Journal of Prosthodontics, 2007, 20: 308-310.
  • [54] Pan H., Wang G., Pan J., Ye G., Sun K., Zhang J. and Wang J. Cold plasma-induced surface modification of heat-polymerized acrylic resin and prevention of early adherence of Candida albicans. Dental Materials Journal, 2015, 34: 529-536. DOI: 10.4012/dmj.2015-035 JOI JST.JSTAGE/dmj/2015-035
  • [55] Radford D. R., Sweet S. P., Challocombe S. J. and Walter J. D. Adherance of Candida albicans to denture-base materials with different surface finishes. Journal of Dentistry, 1998, 26: 577-583. DOI: https://doi.org/10.1016/S0300-5712(97)00034-1
  • [56] Yamauchi M., Yamamoto K., Wakabayashi M. and Kawano J. In vitro adherence of microorganisms to denture base resin with different surface texture. Dental Materials Journal, 1990, 9: 19-24. DOI: https://doi.org/10.4012/dmj.9.19
  • [57] Verran J., Lees G. and Shakespeare A. P. “The effect of surface roughness on the adhesion of Candida albicans to acrylic. Biofouling, 1991, 3: 183-191. DOI: 10.1080/08927019109378173
  • [58] Al Bakri I. A., Harty D., Al Omari W. M., Swain M. V., Chrzanowski W. and Ellakwa A. Surface characteristics and microbial adherence ability of modified polymethylmethacrylate by fluoridated glass fillers. Australian Dentral Journal, 2014, 59: 482-489. DOI: 10.1111/adj.12218
  • [59] Bollen C. M., Lambrechts P. and Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dental Materials, 1997, 13: 258-269. DOI: https://doi.org/10.1016/S0109-5641(97)80038-3
  • [60] Morgan T. D. and Wilson M. The effects of surface roughness and type of denture acrylic on biofilm formation by Streptococcus Oralis in a constant depth film fermentor. Journal of Applied Microbiology, 2001, 91: 47-53. DOI: 10.1046/j.1365-2672.2001.01338.x
  • [61] Zamperini C. A., Pa dos Santos Schiavinato P. C., Machado A. L., Giampaolo E. T., Pavarina A. C. and Vergani C. E. Effect of different periods of preconditioning with saliva on Candida albicans adhesion to a denture base resin bycrystal violet staining and XTT assay. Journal of Investigative and Clinical Dentistry, 2010, 1: 114-119. DOI: 10.1111/j.2041-1626.2010.00013.x
  • [62] Wilson M. and Harvey W. Prevention of bacterial adhesion to denture acrylic. Journal of Dentistry, 1989, 17:166-170. DOI: https://doi.org/10.1016/0300-5712(89)90069-9
  • [63] Nikawa H., Jin C., Hamada T. and Murata H. Interactions between thermal cycled resilient denture lining materials, salivary and serum pellicles and Candida albicans in vitro. Part I. Effects on fungal growth. Journal of Oral Rehabilitation, 2000, 27: 41-51.
  • [64] Samaranayake L. P., McCourtie J. and MacFarlane T. W. Factors affecting the in vitro adherence of Candida albicans to acrylic surfaces. Archives of Oral Biology, 1980, 25: 611-615. DOI: https://doi.org/10.1016/0003-9969(80)90076-X
  • [65] Karaagaclioglu L., Can G., Yilmaz B., Ayhan N., Semiz O. and Levent H. The adherence of Candida albicans to acrylic resin reinforced with different fibers. Journal of Materials Science: Materials in Medicine, 2008, 19: 959-963. DOI: 10.1007/s10856-007-3177-4

Investigation of Candida Microorganisms Adherence to Polymeric Surfaces: A Review

Year 2018, Volume: 4 Issue: 3, 157 - 167, 24.12.2018

Abstract

Microorganism
adhesion on a material surface plays a crucial role on the application of
biomedical devices, implants, drug delivery systems, scaffolds and so on.
Desirable surfaces which have bioactive, bioinert or anti-biofoul property can
be prepared by physical adsorption of specific compounds on these surfaces or
chemical modification. Micro/nano patterned surface fabrication is one of the
most important ways of surface modification. Studies reveal that surface
properties such as wettability (hydrophilicity/hydrophobicity) character of a
surface, surface charge, surface free energy, and surface roughness effects the
adhesion of the microorganisms on material surfaces.



 



The
aim of this study is the investigation of relationship between surface
properties of polymeric materials and adhesion of Candida microorganisms who known as opportunist pathogens in
medical area and the main reason of the systemic fungal infections.

References

  • [1] Tournu H. and Van Dijck P. Candida biofilms and the host: models and new concepts for eradication. International Journal of Microbiology, 2012, 2012: 1-16. DOI: 10.1155/2012/845352
  • [2] Donlan R. M. and Costerton J. W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 2002, 15: 167-193. DOI: 10.1128/CMR.15.2.167-193.2002
  • [3] Bothwell M. R., Smith A. L. and Phillips T. Recalcitrant otorrhea due to Pseudomonas biofilm. Otolaryngology- Head and Neck Surgery, 2003, 129: 599-601. DOI: 10.1016/S0194-5998(03)01395-0
  • [4] Post J. C., Hiller N. L., Nistico L., Stoodley P. and Ehrlich G. D. The role of biofilms in otolaryngologic infections: update 2007. Current Opinion in Otolaryngology and Head and Neck Surgery, 2007, 15: 347-351. DOI: 10.1097/MOO.0b013e3282b97327
  • [5] Ramage G., VandeWalle K., Wickes B. L. and López–Ribot J. L. Characteristics of biofilm formation by Candida albicans. Revista Iberoamericana De Micologia, 2001, 18: 163-170.
  • [6] Andes D., Nett J., Oschel P., Albrecht R., Marchillo K. and Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infection and Immunity, 2004, 72: 6023-6031. DOI: 10.1128/IAI.72.10.6023–6031.2004
  • [7] Rodrigues L. R., Banat I. M., van der Mei H. C., Teixeira J. A. and Oliveira R. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. Journal of Applied Microbiology, 2006, 100: 470-480. DOI: 10.1111/j.1365-2672.2005.02826.x
  • [8] Imamura Y., Chandra J., Mukherjee P. K., Lattif A. A., Szczotka-Flynn L. B., Pearlman E., Lass J. H., O’Donnell K. and Ghannoum M. A. Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type, and susceptibility to lens care solutions. Antimicrobial Agents and Chemotherapy, 2008, 52: 171-182. DOI: 10.1128/AAC.00387-07
  • [9] Chatterjee S., Maiti P. K., Dey R., Kundu A. K. and Dey R. K. Biofilms on indwelling urologic devices: microbes and antimicrobial management prospect. Annals of Medical and Health Sciences Research, 2014, 4: 100-104. DOI: 10.4103/2141-9248.126612
  • [10] Jones H. C., Roth I. L. and Sanders W. M. Electron microscopic study of a slime layer. Journal of Bacteriology, 1969, 99: 316-325.
  • [11] Marsh P. D. Dental plaque, Microbial biofilms. Cambridge University Press, Cambridge, 1995.
  • [12] Rather P. N. Swarmer cell differentiation in proteus mirabilis. Environmental Microbiology, 2005, 7: 1065-1073. DOI: 10.1111/j.1462-2920.2005.00806.x
  • [13] Altun H. U. and Sener B. Biofilm infections and antimicrobial resistance. Hacettepe Tıp Dergisi, 2008, 39: 82-88.
  • [14] Potera C. Microbiology: Forging a link between biofilms and disease. Science, 1999, 283: 1837-1839. DOI: 10.1126/science.283.5409.1837
  • [15] Lindsay D. and von Holy A. Bacterial biofilms within the clinical setting: what healthcare professionals should know. Journal of Hospital Infection, 2006, 64: 313-325. DOI: 10.1016/j.jhin.2006.06.028
  • [16] Kumamoto C. A. Candida biofilms. Current Opinion in Microbiology, 2002, 5: 608-611. DOI: https://doi.org/10.1016/S1369-5274(02)00371-5
  • [17] Coenye T., De Prijck K., Nailis H. and Nelis H. J. Prevention of Candida albicans biofilm formation. The Open Mycology Journal, 2011, 5: 9-20. DOI: 10.2174/1874437001105010009
  • [18] Winn W. C., Allen S. D., Janda W. M., Koneman E. W., Procop G. W., Schreckenberger P. C. and Woods G. L. Mycology. Koneman's Color Atlas and Textbook of Diagnostic Microbiology. Lippincott Williams & Wilkins, Philadelphia, USA, 2006.
  • [19] Yucel A. and Kantarcioğlu A. S. Epidemiology of hospital acquired (nosocomial) fungal infections. Cerrahpaşa Journal of Medicine, 2001, 32: 259-269.
  • [20] Birinci A., Cihan C. C., Bilgin K., Acuner C. and Durupınar B. The investigation of slime production in Candida species. Türk Mikrobiyoloji Cemiyeti Dergisi, 2005, 35: 163-166.
  • [21] Cannon R. D. and Chaffin W. L. Oral colonization by Candida albicans. Critical Reviews in Oral Biology and Medicine. 1999, 10: 359-383. DOI: 10.1177/10454411990100030701
  • [22] Kavanagh K., Sullivan D., Moran G. and Coleman D. Fungal diseases of humans. Fungi: Biology and Applications. John Wiley & Sons, Ltd., 2005.
  • [23] Hawser S. P. and Douglas L. J. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infection and Immunity, 1994, 62: 915-921.
  • [24] Chandra J., Patel J. D., Li J., Zhou G., Mukherjee P. K., McCormick T. S., Anderson J. M. and Ghannoum M. A. Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. Applied and Environmental Microbiology, 2005, 71: 8795-8801. DOI: 10.1128/AEM.71.12.8795–8801.2005
  • [25] Jin Y., Samaranayake L. P., Samaranayake Y. and Yip H. K. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Archives of Oral Biology, 2004, 49: 789-798. DOI: 10.1016/j.archoralbio.2004.04.011
  • [26] Krom B. P., Cohen, J. B., McElhaney Feser G. E. and Cihlar R. L. Optimized Candidal biofilm microtiter assay. Journal of Microbiological Methods, 2007, 68: 421-423. DOI: 10.1016/j.mimet.2006.08.003
  • [27] Millsap K. W., Bos R., Busscher H. J. and Van der Mei H. C. Surface aggregation of Candida albicans on glass in the absence and presence of adhering Streptococcus gordoni in a parallel-plate flow chamber: a surface thermodynamical analysis based on acid-base interactions. Journal of Colloid and Interface Science, 1999, 212: 495-502. DOI: 10.1006/jcis.1998.6054
  • [28] Gallardo-Moreno A. M., González-Martín M. L., Pérez-Giraldo C., Bruque J. M. and Gómez-García A. C. The measurement temperature: an important factor relating physicochemical and adhesive properties of yeast cells to biomaterials. Journal of Colloid and Interface Science, 2004, 271: 351-358. DOI: 10.1016/j.jcis.2003.12.008
  • [29] Davey M. E. and O’toole G. A. Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 2000, 64: 847-867. DOI: 10.1128/MMBR.64.4.847-867.2000
  • [30] Donlan R. M. Biofilms: microbial life on surface. Emerging Infectious Diseases, 2002, 8: 881-890. DOI: 10.3201/eid0809.020063
  • [31] Chandra J., Kuhn D. M., Mukherjee P. K., Hoyer L. L., Mccormick T. and Ghannoum M. A. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. Journal of Bacteriology, 2001, 183: 5385-5394. DOI: 10.1128/JB.183.18.5385-5394.2001
  • [32] Blankenship J. R. and Mitchell A. P. How to build a biofilm: a fungal perspective. Current Opinion in Microbiology, 2006, 9: 588-594. DOI: 10.1016/j.mib.2006.10.003
  • [33] ten Cate J. M., Klis F. M., Pereira-Cenci T., Crielaard W. and de Groot P. W. J. Molecular and cellular mechanisms that lead to Candida biofilm formation. Journal of Dental Research, 2009, 88: 105-115. DOI: 10.1177/0022034508329273
  • [34] Darwazeh A. M. G., Lamey P. J., Samaranayake L. P., Macfarlane T. W., Fisher B. M., Macrury S. M. and Maccuish A. C. The relationship between colonisation, secretor status and in-vitro adhesion of Candida albicans to buccal epithelial cells from diabetics. Journal of Medical Microbiology, 1990, 33: 43-49. DOI: 10.1099/00222615-33-1-43
  • [35] Samaranayake Y. H., Wu P. C., Samaranayake L. P. and So M. Relationship between the cell surface hydrophobicity and adherence of Candida krusei and Candida albicans to epithelial and denture acrylic surfaces. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 1995, 103: 707-713. DOI: https://doi.org/10.1111/j.1699-0463.1995.tb01427.x
  • [36] Seneviratne C. J., Jin L. and Samaranayake L. P. Biofilm lifestyle of Candida: a mini review. Oral Diseases, 2008, 14: 582-590. DOI: 10.1111/j.1601-0825.2007.01424.x
  • [37] Cousins B. G., Allison H. E., Doherty P. J., Edwards C., Garvey M. J., Martin D. S. and Williams R. L. Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans. Journal of Applied Microbiology, 2007, 102: 757-765. DOI: 10.1111/j.1365-2672.2006.03124.x
  • [38] Erbil H. Y. Surface chemistry of solid and liquid interfaces. Blackwell, Oxford, UK, 2006.
  • [39] Vladkova T. G. Surface engineering of polymeric biomaterials. iSmithers Rapra Publishing, United Kingdom, 2013.
  • [40] Minagi S., Miyake Y., Inagaki K., Tsuru H. and Suginaka H. Hydrophobic interaction in Candida albicans and Candida tropicalis adherence to various denture base resin materials. Infection and Immunity, 1985, 47: 11-14.
  • [41] Klotz S. A., Drutz D. J. and Zaric J. E. Factors governing adherence of Candida species to plastic surfaces. Infection and Immunity, 1985, 50: 97-101.
  • [42] Nikawa H., Chen, J., Hamada T., Nishumura M. and Polyzois G. Candida albicans colonization on thermal cycled maxillofacial polymeric materials in vitro. Journal of Oral Rehabilitation, 2001, 28: 526-533. DOI: https://doi.org/10.1046/j.1365-2842.2001.00685.x
  • [43] Park S. E., Periathamby A. R. and Loza J. C. Effect of surface-charged poly(methyl methacrylate) on the adhesion of Candida albicans. Journal of Prosthodontics, 2003, 12: 249-254. DOI: 10.1016/S1059-941X(03)00107-4
  • [44] Gallardo-Moreno A. M., Gonzales-Martin M. L., Bruque J. M. and Perez-Giraldo C. The adhesion strength of Candida parapsilosis to glass and silicone as a function of hydrophobicity, roughness and cell morphology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 249: 99-103. DOI: 10.1016/j.colsurfa.2004.08.058
  • [45] Yıldırım M. S., Hasanresioglu U., Hasırcı N. and Sultan N. Adherence of Candida albicans to glow-discharge modified acrylic denture base polymers. Journal of Oral Rehabilitation, 2005, 32: 518-525. DOI: 10.1111/j.1365-2842.2005.01454.x
  • [46] Zhou L., Tong Z., Wu G., Feng Z., Bai S., Dong Y., Ni L. and Zhao Y. Parylene coating hinders Candida albicans adhesion to silicone elastomers and denture bases resin. Archives of Oral Biology, 2010, 55: 401-409. DOI: 10.1016/j.archoralbio.2010.03.013
  • [47] Singh N., Agrawal V., Pemmaraju S. C., Panwar R. and Pruthi V. Impact of infectious Candida albicans biofilm on biomaterials. Indian Journal of Biotechnology, 2011, 10: 417-422.
  • [48] Kang S. H., Lee H. J., Hong S. H., Kim K. H. and Kwon T. Y. Influence of surface characteristics on the adhesion of Candida albicans to various denture lining materials. Acta Odontologica Scandinavica, 2013, 71: 241-248. DOI: 10.3109/00016357.2012.671360
  • [49] Atay A., Piskin B., Akin H., Sipahi C., Karakas A. and Saracli M. A. Evaluation of Candida albicans adherence on the surface of various maxillofacial silicone materials. Journal de Mycologie Médicale, 2013, 23: 27-32. DOI: https://doi.org/10.1016/j.mycmed.2012.12.005
  • [50] Koch C., Bürgers R. and Hahnel S. Candida albicans adherence and proliferation on the surface of denture base materials. Gerodontolojy, 2013, 30: 309-313. DOI: 10.1111/ger.12056
  • [51] Serrano-Granger C., Cerero-Lapiedra R. and Campo-Trapero J. In vitro study of the adherence of Candida albicans to acrylic resins: relationship to surface energy. The International Journal of Prosthodontics, 2005, 18: 392-398.
  • [52] Moura J. S., da Silva W. J., Pereira T., Del Bel Cury A. A. and Rodrigues Garcia R. C. Influence of acrylic resin polymerization methods and saliva on the adherence of four Candida species. The Journal of Prosthetic Dentistry, 2006, 96: 205-211. DOI: 10.1016/j.prosdent.2006.07.004
  • [53] Pereira-Cenci T., Cury A. A., Cenci M. S. and Rodrigues-Garcia R. C. In vitro Candida colonization on acrylic resins and denture liners: influence of surface free energy, roughness, saliva, and adhering bacteria. International Journal of Prosthodontics, 2007, 20: 308-310.
  • [54] Pan H., Wang G., Pan J., Ye G., Sun K., Zhang J. and Wang J. Cold plasma-induced surface modification of heat-polymerized acrylic resin and prevention of early adherence of Candida albicans. Dental Materials Journal, 2015, 34: 529-536. DOI: 10.4012/dmj.2015-035 JOI JST.JSTAGE/dmj/2015-035
  • [55] Radford D. R., Sweet S. P., Challocombe S. J. and Walter J. D. Adherance of Candida albicans to denture-base materials with different surface finishes. Journal of Dentistry, 1998, 26: 577-583. DOI: https://doi.org/10.1016/S0300-5712(97)00034-1
  • [56] Yamauchi M., Yamamoto K., Wakabayashi M. and Kawano J. In vitro adherence of microorganisms to denture base resin with different surface texture. Dental Materials Journal, 1990, 9: 19-24. DOI: https://doi.org/10.4012/dmj.9.19
  • [57] Verran J., Lees G. and Shakespeare A. P. “The effect of surface roughness on the adhesion of Candida albicans to acrylic. Biofouling, 1991, 3: 183-191. DOI: 10.1080/08927019109378173
  • [58] Al Bakri I. A., Harty D., Al Omari W. M., Swain M. V., Chrzanowski W. and Ellakwa A. Surface characteristics and microbial adherence ability of modified polymethylmethacrylate by fluoridated glass fillers. Australian Dentral Journal, 2014, 59: 482-489. DOI: 10.1111/adj.12218
  • [59] Bollen C. M., Lambrechts P. and Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dental Materials, 1997, 13: 258-269. DOI: https://doi.org/10.1016/S0109-5641(97)80038-3
  • [60] Morgan T. D. and Wilson M. The effects of surface roughness and type of denture acrylic on biofilm formation by Streptococcus Oralis in a constant depth film fermentor. Journal of Applied Microbiology, 2001, 91: 47-53. DOI: 10.1046/j.1365-2672.2001.01338.x
  • [61] Zamperini C. A., Pa dos Santos Schiavinato P. C., Machado A. L., Giampaolo E. T., Pavarina A. C. and Vergani C. E. Effect of different periods of preconditioning with saliva on Candida albicans adhesion to a denture base resin bycrystal violet staining and XTT assay. Journal of Investigative and Clinical Dentistry, 2010, 1: 114-119. DOI: 10.1111/j.2041-1626.2010.00013.x
  • [62] Wilson M. and Harvey W. Prevention of bacterial adhesion to denture acrylic. Journal of Dentistry, 1989, 17:166-170. DOI: https://doi.org/10.1016/0300-5712(89)90069-9
  • [63] Nikawa H., Jin C., Hamada T. and Murata H. Interactions between thermal cycled resilient denture lining materials, salivary and serum pellicles and Candida albicans in vitro. Part I. Effects on fungal growth. Journal of Oral Rehabilitation, 2000, 27: 41-51.
  • [64] Samaranayake L. P., McCourtie J. and MacFarlane T. W. Factors affecting the in vitro adherence of Candida albicans to acrylic surfaces. Archives of Oral Biology, 1980, 25: 611-615. DOI: https://doi.org/10.1016/0003-9969(80)90076-X
  • [65] Karaagaclioglu L., Can G., Yilmaz B., Ayhan N., Semiz O. and Levent H. The adherence of Candida albicans to acrylic resin reinforced with different fibers. Journal of Materials Science: Materials in Medicine, 2008, 19: 959-963. DOI: 10.1007/s10856-007-3177-4
There are 65 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Conference Paper
Authors

Hakan Kır This is me 0000-0002-6330-1666

İkrime Orkan Uçar 0000-0003-4026-1830

Özge Kılınçel This is me 0000-0003-1872-6670

Emel Çalışkan 0000-0002-9451-7865

Publication Date December 24, 2018
Submission Date May 28, 2018
Acceptance Date October 22, 2018
Published in Issue Year 2018 Volume: 4 Issue: 3

Cite

IEEE H. Kır, İ. Orkan Uçar, Ö. Kılınçel, and E. Çalışkan, “Investigation of Candida Microorganisms Adherence to Polymeric Surfaces: A Review”, GJES, vol. 4, no. 3, pp. 157–167, 2018.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg