Research Article
BibTex RIS Cite

Kuru Üzüm Tanelerinin Makine Görüşü ve Yapay Zeka Yöntemleri Kullanılarak Sınıflandırılması

Year 2020, Volume: 6 Issue: 3, 200 - 209, 27.12.2020

Abstract

Bu çalışmada, Türkiye'de yetiştirilen iki farklı kuru üzüm çeşidinin (Keçimen ve Besni) ayırt edilebilmesi adına makine görme sistemi geliştirilmiştir. Öncelikle her iki çeşitten eşit sayıda olmak üzere toplam 900 adet kuru üzüm tane görüntüsü elde edilmiştir. Bu görüntüler çeşitli önişlemlerden geçirilmiş ve görüntü işleme teknikleri kullanılarak 7 adet morfolojik özellik çıkarım işlemi gerçekleştirilmiştir. Ayrıca her özellik için minimum, ortalama, maksimum ve standart sapma istatistiki bilgileri hesaplanmıştır. Her iki kuru üzüm çeşidinin özellikler üzerindeki dağılımları incelenerek grafikler üzerinde bu dağılımlar gösterilmiştir. Daha sonra LR, MLP, ve SVM makine öğrenme teknikleri kullanılarak modeller oluşturulmuş ve performans ölçümleri gerçekleştirilmiştir. Sınıflandırmada LR ile %85.22, MLP ile %86.33 ve SVM ile çalışmada elde edilen en yüksek sınıflandırma doğruluğu olan %86.44 başarı elde edilmiştir. Eldeki veri sayısı da düşünüldüğünde çalışmanın başarıya ulaştığını söylemek mümkündür.

References

  • Karimi, N., et al., Modelling of raisin berries by some physical and statistical characteristics. Int. Agrophys, 2011. 25: p. 141-147.
  • Semerci, A., et al., Türkiye bağcılığının genel durumu. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi 2015. 20(2).
  • Karimi, N., R.R. Kondrood, and T. Alizadeh, An intelligent system for quality measurement of Golden Bleached raisins using two comparative machine learning algorithms. Measurement, 2017. 107: p. 68-76.
  • Mollazade, K., M. Omid, and A. Arefi, Comparing data mining classifiers for grading raisins based on visual features. Computers electronics in agriculture, 2012. 84: p. 124-131.
  • Okamura, N.K., M. Delwiche, and J. Thompson, Raisin grading by machine vision. Transactions of the ASAE, 1993.
  • Omid, M., et al., Implementation of an efficient image processing algorithm for grading raisins. International Journal of Signal Image Processing, 2010. 1(1): p. 31-34.
  • Yu, X., et al., Raisin quality classification using least squares support vector machine (LSSVM) based on combined color and texture features. Food bioprocess technology, 2012. 5(5): p. 1552-1563.
  • Angadi, S.A. and N. Hiregoudar, A Cost Effective Algorithm for Grading Raisins Using Image Processing. International Journal of Recent Trends in Engineering Research Volume, 2016. 2: p. 2455-1457.
  • MathWorks. Image Processing Toolbox. 2020 [Accessed: May. 05, 2020]; Available from: https://ch.mathworks.com/help/images/morphological-filtering.html.
  • Çataloluk, H., Gerçek tıbbi veriler üzerinde veri madenciliği yöntemlerini kullanarak hastalık teşhisi. 2012, Bilecik Üniversitesi, Fen Bilimleri Enstitüsü.
  • Ozkan, I.A. and M. Koklu, Skin Lesion Classification using Machine Learning Algorithms. International Journal of Intelligent Systems Applications in Engineering, 2017. 5(4): p. 285-289.
  • Gupta, P., Cross-validation in machine learning. Towards Data Science, 2017.
  • Özkan, Y., Veri madenciliği yöntemleri. 2008: Papatya Yayıncılık Eğitim.
  • Cruyff, M.J., et al., A review of regression procedures for randomized response data, including univariate and multivariate logistic regression, the proportional odds model and item response model, and self-protective responses, in Handbook of Statistics. 2016, Elsevier. p. 287-315.
  • Kalantar, B., et al., Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural Hazards Risk, 2018. 9(1): p. 49-69.
  • Wikipedia. Logistic regression. 2020 [Accessed: May. 05, 2020] ; Available from: https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=955290285.
  • SABANCI, K., Farklı Boyuttaki Elmaların KNN ve MLP Algoritmaları Kullanılarak Sınıflandırılması. Honor Committee: p. 782.
  • Arora, R., Comparative analysis of classification algorithms on different datasets using WEKA. International Journal of Computer Applications, 2012. 54(13).
  • Abhang, P.A., B.W. Gawali, and S.C. Mehrotra, Introduction to EEG-and speech-based emotion recognition. 2016: Academic Press.
  • Kaynar, O., et al. Makine öğrenmesi yöntemleri ile Duygu Analizi. in International Artificial Intelligence and Data Processing Symposium (IDAP'16). 2016.
  • Mathworks. Support Vector Machines for Binary Classification. 2020 [Accessed: May. 05, 2020]; Available from: https://ch.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html#bsr5b42.

Classification of Raisin Grains Using Machine Vision and Artificial Intelligence Methods

Year 2020, Volume: 6 Issue: 3, 200 - 209, 27.12.2020

Abstract

In this study, machine vision system was developed in order to distinguish between two different variety of raisins (Kecimen and Besni) grown in Turkey. Firstly, a total of 900 pieces raisin grains were obtained, from an equal number of both varieties. These images were subjected to various preprocessing steps and 7 morphological feature extraction operations were performed using image processing techniques. In addition, minimum, mean, maximum and standard deviation statistical information was calculated for each feature. The distributions of both raisin varieties on the features were examined and these distributions were shown on the graphs. Later, models were created using LR, MLP, and SVM machine learning techniques and performance measurements were performed. The classification achieved 85.22% with LR, 86.33% with MLP and 86.44% with the highest classification accuracy obtained in the study with SVM. Considering the number of data available, it is possible to say that the study was successful.

References

  • Karimi, N., et al., Modelling of raisin berries by some physical and statistical characteristics. Int. Agrophys, 2011. 25: p. 141-147.
  • Semerci, A., et al., Türkiye bağcılığının genel durumu. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi 2015. 20(2).
  • Karimi, N., R.R. Kondrood, and T. Alizadeh, An intelligent system for quality measurement of Golden Bleached raisins using two comparative machine learning algorithms. Measurement, 2017. 107: p. 68-76.
  • Mollazade, K., M. Omid, and A. Arefi, Comparing data mining classifiers for grading raisins based on visual features. Computers electronics in agriculture, 2012. 84: p. 124-131.
  • Okamura, N.K., M. Delwiche, and J. Thompson, Raisin grading by machine vision. Transactions of the ASAE, 1993.
  • Omid, M., et al., Implementation of an efficient image processing algorithm for grading raisins. International Journal of Signal Image Processing, 2010. 1(1): p. 31-34.
  • Yu, X., et al., Raisin quality classification using least squares support vector machine (LSSVM) based on combined color and texture features. Food bioprocess technology, 2012. 5(5): p. 1552-1563.
  • Angadi, S.A. and N. Hiregoudar, A Cost Effective Algorithm for Grading Raisins Using Image Processing. International Journal of Recent Trends in Engineering Research Volume, 2016. 2: p. 2455-1457.
  • MathWorks. Image Processing Toolbox. 2020 [Accessed: May. 05, 2020]; Available from: https://ch.mathworks.com/help/images/morphological-filtering.html.
  • Çataloluk, H., Gerçek tıbbi veriler üzerinde veri madenciliği yöntemlerini kullanarak hastalık teşhisi. 2012, Bilecik Üniversitesi, Fen Bilimleri Enstitüsü.
  • Ozkan, I.A. and M. Koklu, Skin Lesion Classification using Machine Learning Algorithms. International Journal of Intelligent Systems Applications in Engineering, 2017. 5(4): p. 285-289.
  • Gupta, P., Cross-validation in machine learning. Towards Data Science, 2017.
  • Özkan, Y., Veri madenciliği yöntemleri. 2008: Papatya Yayıncılık Eğitim.
  • Cruyff, M.J., et al., A review of regression procedures for randomized response data, including univariate and multivariate logistic regression, the proportional odds model and item response model, and self-protective responses, in Handbook of Statistics. 2016, Elsevier. p. 287-315.
  • Kalantar, B., et al., Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural Hazards Risk, 2018. 9(1): p. 49-69.
  • Wikipedia. Logistic regression. 2020 [Accessed: May. 05, 2020] ; Available from: https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=955290285.
  • SABANCI, K., Farklı Boyuttaki Elmaların KNN ve MLP Algoritmaları Kullanılarak Sınıflandırılması. Honor Committee: p. 782.
  • Arora, R., Comparative analysis of classification algorithms on different datasets using WEKA. International Journal of Computer Applications, 2012. 54(13).
  • Abhang, P.A., B.W. Gawali, and S.C. Mehrotra, Introduction to EEG-and speech-based emotion recognition. 2016: Academic Press.
  • Kaynar, O., et al. Makine öğrenmesi yöntemleri ile Duygu Analizi. in International Artificial Intelligence and Data Processing Symposium (IDAP'16). 2016.
  • Mathworks. Support Vector Machines for Binary Classification. 2020 [Accessed: May. 05, 2020]; Available from: https://ch.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html#bsr5b42.
There are 21 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Research Articles
Authors

İlkay Çınar 0000-0003-0611-3316

Murat Koklu 0000-0002-2737-2360

Prof. Dr. Şakir Taşdemir 0000-0002-2433-246X

Publication Date December 27, 2020
Submission Date August 5, 2020
Acceptance Date November 17, 2020
Published in Issue Year 2020 Volume: 6 Issue: 3

Cite

IEEE İ. Çınar, M. Koklu, and P. D. Ş. Taşdemir, “Classification of Raisin Grains Using Machine Vision and Artificial Intelligence Methods”, GJES, vol. 6, no. 3, pp. 200–209, 2020.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg