Review
BibTex RIS Cite

Yeni Bir Kent İçi Ulaşım Türü: E-scooter

Year 2022, Volume: 8 Issue: 1, 60 - 73, 30.04.2022

Abstract

Mikromobilite olarak sınıflandırılan paylaşımlı bisiklet ve scooter sistemleri, son yıllarda, alternatif bir kent içi ulaşım sistemi olarak gündeme gelmiştir. E-scooter sistemi, sağladığı esneklik ve kolay kullanımı sebebiyle kısa sürede dünyada oldukça fazla kullanılan bir ulaşım türü olarak karşımıza çıkmaktadır. Dünya literatüründeki e-scooter kullanımı; demografi, yolculuk süresi, yolculuk mesafesi, yolculuk amacı, güvenlik sorunları, çevresel etkileri, yasal düzenleme ve uygulamaları başlıkları altında incelenmiştir. Kullanıcı yaş aralığının 16-60 yaş aralığında dağılım gösterdiği, genelde kısa mesafeli (~2km) ve kısa süreli (<11dk) yolculuklarda kullanıldıkları ve yeni bir ulaşım türü olarak mod değişimine sebep oldukları elde edilen en önemli bulgulardır. Güvenlik açısından, kazaların yarısından fazlasının kullanıcı kaynaklı olduğu gözlenmiştir. Çevresel anlamda e-scooterlar çevre dostu olarak değerlendiriliyor olsa da, araç ömürlerinin kısa olması, en büyük emisyon kaynağının malzeme ve üretim olduğu göz önüne alındığında, bu etkiyi azaltmaktadır. E-scooterların eğlence ve boş zaman aktivitesi olmaktan çıkarılıp bir ulaşım modu olarak kentsel hareketlilik planlarında yer alması için sistemin yasal zemininin oluşturulması gerekmektedir. Bu çalışmada dünyada ve Türkiye’de yapılmış e-scooter çalışmalarından ve uygulamalarından elde edilen veriler ile bir kent içi ulaşım türü olarak e-scooterın değerlendirilmesi ve incelenmesi yapılmış ve uygulama ve denetim için öneriler sunulmuştur. Dünya kentlerindeki, ilgili yasal düzenlemeler incelenerek Türkiye’de kentlerin alt yapısına göre farklı düzenlemeler getirilmesi önerilmiştir.

References

  • [1] Department of Economic and Social Affairs United Nation, “World Urbanization Prospects 2018,” Webpage, 2018. https://population.un.org/wup/.
  • [2] J. Jiao and S. Bai, “Understanding the shared e-scooter travels in Austin, TX,” ISPRS Int. J. Geo-Information, vol. 9, no. 2, 2020, doi: 10.3390/ijgi9020135.
  • [3] S. E. Bibri and J. Krogstie, “Smart sustainable cities of the future: An extensive interdisciplinary literature review,” Sustain. Cities Soc., vol. 31, pp. 183–212, 2017, doi: 10.1016/j.scs.2017.02.016.
  • [4] D. Hoornweg, L. Sugar, and C. L. T. Gómez, “Cities and greenhouse gas emissions: moving forward,” Environ. Urban., vol. 23, no. 1, pp. 207–227, 2011, doi: 10.1177/0956247810392270.
  • [5] C. Chavez-Baeza and C. Sheinbaum-Pardo, “Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area,” Energy, vol. 66, no. 2, pp. 624–634, 2014, doi: 10.1016/j.energy.2013.12.047.
  • [6] S. Das, “Competitive or Complementary : A Spatiotemporal Investigative Analysis into Austin ’ s Shared Micromobility Modes .,” The University of Texas at Austin, 2020.
  • [7] C. S. Smith and P. J. Schwieterman, “E-Scooter Scenarios: Evaluating the Potential Mobility Benefits of Shared Dockless Scooters in Chicago,” Chaddick Inst. Policy Ser., no. 1, pp. 6–8, 2018.
  • [8] N. Fearnley, E. Johnsson, and S. H. Berge, “Patterns of E-Scooter Use in Combination with Public Transport,” Findings, vol. 2019, pp. 1–7, 2020, doi: 10.32866/001c.13707.
  • [9] S. O’hern and N. Estgfaeller, “A scientometric review of powered micromobility,” Sustain., vol. 12, no. 22, pp. 1–21, 2020, doi: 10.3390/su12229505.
  • [10] Z. Zou, H. Younes, S. Erdoğan, and J. Wu, “Exploratory Analysis of Real-Time E-Scooter Trip Data in Washington, D.C.,” Transp. Res. Rec., vol. 2674, no. 8, pp. 285–299, 2020, doi: 10.1177/0361198120919760.
  • [11] OECD/ITF, “Safe Micromobility,” p. 98, 2020, [Online]. Available: https://www.itf-oecd.org/safe-micromobility.
  • [12] A. Demeyere, “Techno-economic analysis of micro-mobility providers : derivation of viability conditions,” 2020.
  • [13] S. Shaheen and A. Cohen, “Shared Micromobility Policy Toolkit,” pp. 1–34, 2019, doi: 10.7922/G2TH8JW7.
  • [14] W. Riggs and M. Kawashima, “Exploring Best Practice for Municipal E-Scooter Policy in the United States,” in 99th Annual Meeting of the Transportation Research Board, 2020, pp. 415–422.
  • [15] S. Shaheen, A. Cohen, and I. Zohdy, “Shared Mobility: Current Practices and Guiding Principles,” Fhwa-Hop-16-022 2., no. Washington D.C., p. 120, 2016.
  • [16] G. McKenzie, “Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, D.C.,” J. Transp. Geogr., vol. 78, no. June 2019, pp. 19–28, 2019, doi: 10.1016/j.jtrangeo.2019.05.007.
  • [17] J. Degele et al., “Identifying E-Scooter Sharing Customer Segments using Clustering,” in IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 2018, pp. 1–8.
  • [18] S. Gössling, “Integrating e-scooters in urban transportation: Problems, policies, and the prospect of system change,” Transp. Res. Part D Transp. Environ., vol. 79, no. January, p. 102230, 2020, doi: 10.1016/j.trd.2020.102230.
  • [19] D. Schellong, P. Sadek, C. Schaetzberger, and T. Barrack, “The Promise and Pitfalls of E-Scooter Sharing,” Bost. Consult. Gr., pp. 1–14, 2019.
  • [20] G. McKenzie, “Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, D.C.,” J. Transp. Geogr., vol. 78, no. May, pp. 19–28, 2019, doi: 10.1016/j.jtrangeo.2019.05.007.
  • [21] H. Younes, Z. Zou, J. Wu, and G. Baiocchi, “Comparing the Temporal Determinants of Dockless Scooter-share and Station-based Bike-share in Washington, D.C.,” Transp. Res. Part A Policy Pract., vol. 134, no. December 2019, pp. 308–320, 2020, doi: 10.1016/j.tra.2020.02.021.
  • [22] M. Kostrzewska and B. Macikowski, “Towards Hybrid Urban Mobility: Kick Scooter as a Means of Individual Transport in the City,” IOP Conf. Ser. Mater. Sci. Eng., vol. 245, no. 5, 2017, doi: 10.1088/1757-899X/245/5/052073.
  • [23] H. Moreau, L. de J. de Meux, V. Zeller, P. D’Ans, C. Ruwet, and W. M. J. Achten, “Dockless e-scooter: A green solution for mobility? Comparative case study between dockless e-scooters, displaced transport, and personal e-scooters,” Sustain., vol. 12, no. 5, 2020, doi: 10.3390/su12051803.
  • [24] S. He and K. G. Shin, “Dynamic Flow Distribution Prediction for Urban Dockless E-Scooter Sharing Reconfiguration,” Web Conf. 2020 - Proc. World Wide Web Conf. WWW 2020, pp. 133–143, 2020, doi: 10.1145/3366423.3380101.
  • [25] L. J. Mayhew and C. Bergin, “Impact of e-scooter injuries on Emergency Department imaging,” J. Med. Imaging Radiat. Oncol., vol. 63, no. 4, pp. 461–466, 2019, doi: 10.1111/1754-9485.12889.
  • [26] J. Rose, D. Schellong, C. Schaetzberger, and J. Hill, “How E-Scooters Can Win a Place in Urban Transport,” Bost. Consult. Gr., pp. 1–10, 2020.
  • [27] NACTO (National Association of City Transportation Officials), “Guidelines for Regulating Shared Micromobility,” no. September, pp. 1–56, 2019, [Online]. Available: https://nacto.org/wp-content/uploads/2019/09/NACTO_Shared_Micromobility_Guidelines_Web.pdf.
  • [28] A. de Bortoli and Z. Christoforou, “Consequential LCA for territorial and multimodal transportation policies: method and application to the free-floating e-scooter disruption in Paris,” J. Clean. Prod., vol. 273, p. 122898, 2020, doi: 10.1016/j.jclepro.2020.122898.
  • [29] Lime, “More Major European Cities Pass 1 Million E-Scooter Ride Milestone,” 2019. https://www.li.me/second street/more-major-european-cities-pass-1-million-e-scooter-ride-milestone (accessed Sep. 01, 2021).
  • [30] G. Dias, E. Arsenio, and P. Ribeiro, “The role of shared e-scooter systems in urban sustainability and resilience during the covid-19 mobility restrictions,” Sustain., vol. 13, no. 13, pp. 1–19, 2021, doi: 10.3390/su13137084.
  • [31] A. Li, P. Zhao, H. He, and K. W. Axhausen, “Understanding the variations of micro-mobility behavior before and during COVID-19 pandemic period,” 2009. [Online]. Available: https://doi.org/10.3929/ethz-a-010025751.
  • [32] K. Button, H. Frye, and D. Reaves, “Economic regulation and E-scooter networks in the USA,” Res. Transp. Econ., vol. 84, no. October, p. 100973, 2020, doi: 10.1016/j.retrec.2020.100973.
  • [33] J. MIN-JI, “Lime’s e-scooters arrive in Korea,” 2019. https://koreajoongangdaily.joins.com/news/article/article.aspx?aid=3068566 (accessed Sep. 01, 2021).
  • [34] PBOT, “2018 E-Scooter Pilot User Survey Results,” pp. 1–10, 2018, [Online]. Available: https://www.portlandoregon.gov/transportation/article/700916.
  • [35] “City of Santa Monica Shared Mobility Device Pilot Program User Survey Results Conducted 01-25-2019 to 02-15-2019,” 2019. [Online]. Available: https://www.smgov.net/uploadedFiles/Departments/PCD/Transportation/SharedMobility_UserSurveySummary_20190509_FINAL.PDF.
  • [36] H. Badia and E. Jenelius, “Shared e-scooter micromobility : A review of travel behavior , sustainability , infrastructure , safety and policies Shared e-scooter micromobility : A review of travel behavior , sustainability ,” no. March, 2021, doi: 10.13140/RG.2.2.19225.95841.
  • [37] 6t-bureau de recherche, “Uses and Users of Free-floating Electric Scooters in France,” 2019.
  • [38] M. Ensor, O. Maxwell, O. Bruce, and M. Industries, Mode shift to micromobility. 2021.
  • [39] SFMTA-San Francisco Metropolitan Transportation Agency, “Powered Scooter Share Mid-Pilot Evaluation,” San Francisco, California, 2019.
  • [40] D. Uluk et al., “E-scooter: initial knowledge about causes of accidents and injury patterns,” Notfall und Rettungsmedizin, vol. 23, no. 4, pp. 293–298, 2020, doi: 10.1007/s10049-019-00678-3.
  • [41] N. Haworth, A. Schramm, and D. Twisk, “Comparing the risky behaviours of shared and private e-scooter and bicycle riders in downtown Brisbane, Australia,” Accid. Anal. Prev., vol. 152, no. December 2020, p. 105981, 2021, doi: 10.1016/j.aap.2021.105981.
  • [42] M. Siman-Tov, I. Radomislensky, Israel Trauma Group, and K. Peleg, “The casualties from electric bike and motorized scooter road accidents,” Traffic Inj. Prev., vol. 18, no. 3, pp. 318–323, 2017, doi: 10.1080/15389588.2016.1246723.
  • [43] X. Zhang, M. Cui, Y. Gu, L. Stallones, and H. Xiang, “Trends in electric bike-related injury in China, 2004-2010.,” Asia-Pacific J. public Heal., vol. 27, no. 2, pp. NP1819-26, Mar. 2015, doi: 10.1177/1010539513496840.
  • [44] H. Kleinertz, D. Ntalos, F. Hennes, J. V. Nüchtern, K. H. Frosch, and D. M. Thiesen, “Accident mechanisms and injury patterns in E-scooter users. A retrospective analysis and comparison with cyclists,” Dtsch. Arztebl. Int., vol. 118, no. 8, pp. 117–121, 2021, doi: 10.3238/arztebl.m2021.0019.
  • [45] J. Yang et al., “Unsafe riding practice among electric bikers in Suzhou, China: An observational study,” BMJ Open, vol. 4, no. 1, 2014, doi: 10.1136/bmjopen-2013-003902.
  • [46] Austin Public Health and City of Austin, “Dockless Electric Injuries Study,” no. November 2018, p. 15, 2019.
  • [47] eit Urban Mobility, “Activity Output E-Micromobility Safety Assessment,” pp. 1–42, 2020.
  • [48] K. Markvica and E. Al, “E-Scooter as Environmentally Friendly Last Mile Option? Insights on Spatial and Infrastructural Implications for Urban Areas based on the Example of Vienna,” Conf. Pap., no. September, pp. 15–18, 2020.
  • [49] J. Hollingsworth, B. Copeland, and J. X. Johnson, “Are e-scooters polluters? the environmental impacts of shared dockless electric scooters,” Environ. Res. Lett., vol. 14, no. 8, 2019, doi: 10.1088/1748-9326/ab2da8.
  • [50] M. Masoud, M. Elhenawy, M. H. Almannaa, S. Q. Liu, S. Glaser, and A. Rakotonirainy, “Heuristic Approaches to Solve E-Scooter Assignment Problem,” IEEE Access, vol. 7, pp. 175093–175105, 2019, doi: 10.1109/ACCESS.2019.2957303.
  • [51] S. Severengiz, S. Finke, N. Schelte, and N. Wendt, “Life Cycle Assessment on the Mobility Service E-Scooter Sharing,” 2020 IEEE Eur. Technol. Eng. Manag. Summit, E-TEMS 2020, 2020, doi: 10.1109/E-TEMS46250.2020.9111817.
  • [52] S. Severengiz, N. Schelte, and S. Bracke, “Analysis of the environmental impact of e-scooter sharing services considering product reliability characteristics and durability,” Procedia CIRP, vol. 96, pp. 181–188, 2020, doi: 10.1016/j.procir.2021.01.072.
  • [53] M. Ridderstedt and D. Öhman, “Voi har kraftigt överdrivit elsparkcyklars klimatnytta,” Sveriges Radio, 2019. https://sverigesradio.se/artikel/7323721.
  • [54] Lufthansa Innovation Hub, “The environmental impact of today’s transport types,” TNMT, 2021. https://tnmt.com/infographics/carbon-emissions-by-transport-type/.
  • [55] Voi Technology, “Sustainability Statement,” 2019.
  • [56] D. Carrignon, “Connected and autonomous vehicles, electric scooter and their implications for road network design,” Transp. Res. Procedia, vol. 49, no. 2019, pp. 160–169, 2020, doi: 10.1016/j.trpro.2020.09.014.
  • [57] M. M. Sokołowski, “Renewable and citizen energy communities in the European Union: how (not) to regulate community energy in national laws and policies,” J. Energy Nat. Resour. Law, vol. 38, no. 3, pp. 289–304, 2020, doi: 10.1080/02646811.2020.1759247.
  • [58] R. Peace, “eScooter Laws and Regulations In The USA,” Electric Bike Report, 2021. https://electricbikereport.com/electric-scooter-laws-and-regulations/.
  • [59] D. Shinkle and S. Oren, “Electric Scooters | Laws Balance Public Safety and Micromobility Needs,” National Conference of State Legislatures, 2020. https://www.ncsl.org/bookstore/state-legislatures-magazine/trends-coronavirus-teen-vaping-e-scooters-and-more.aspx.
  • [60] J. K. Mathew, M. Liu, and D. M. Bullock, “Impact of Weather on Shared Electric Scooter Utilization,” 2019 IEEE Intell. Transp. Syst. Conf. ITSC 2019, pp. 4512–4516, 2019, doi: 10.1109/ITSC.2019.8917121.
  • [61] O. James, J. I. Swiderski, J. Hicks, D. Teoman, and R. Buehler, “Pedestrians and e-scooters: An initial look at e-scooter parking and perceptions by riders and non-riders,” Sustain., vol. 11, no. 20, 2019, doi: 10.3390/su11205591.
  • [62] R. Ratan et al., “The (digital) medium of mobility is the message: Examining the influence of e-scooter mobile app perceptions on e-scooter use intent,” Comput. Hum. Behav. Reports, vol. 3, no. December 2020, p. 100076, 2021, doi: 10.1016/j.chbr.2021.100076.
  • [63] M. C. BÖLEN and O. ÇELİKER, “Paylaşımlı Elektrikli Scooter Hizmetlerini Kullanma Niyetinde Etkili Olan Faktörler,” Atatürk Üniversitesi İktisadi ve İdari Bilim. Derg., 2021, doi: 10.16951/atauniiibd.898594.
  • [64] B. E. Sarıışık and Ö. Y. Ercoşkun, “Dünyada Ve Türkiye'de Mikro Hareketlilikte E-Scooter Sistemleri E-Scooters in the World and in Turkey as Micro Mobility Devices,” vol. 2, pp. 72–94, 2021.

A New Type of Urban Transportation: E-scooter

Year 2022, Volume: 8 Issue: 1, 60 - 73, 30.04.2022

Abstract

Micromobility devices such as shared bicycle and scooter systems, have come to the fore as an alternative urban transportation system in recent years. The e-scooter system emerges as a type of transportation that is widely used in the world in a short time due to the flexibility and ease of use it provides. The use of e-scooters in the world literature is investigated in terms of; demography, travel time, journey distance, purpose of travel, safety problems, environmental effects, legal regulations and applications. The most important findings are that the user age range is between 16-60 years, they are generally used in short distance (~2km) and short-term (<11min) journeys, and they cause a mode change as a new type of transportation. In terms of safety, it has been observed that more than half of the accidents are caused by the user. Although e-scooters are considered environmentally, the short vehicle lifespan reduces this effect, given that the biggest emission source is materials and production. In order for e-scooters to be included in urban mobility plans as a mode of transportation rather than being an entertainment and leisure activity, the legal basis of the system should be established. In this study, the evaluation and examination of the e-scooter as a type of urban transportation was made with the data obtained from e-scooter studies and applications in the world and in Turkey, and suggestions for implementation and supervision were presented. By examining the relevant legal regulations in the cities of the world, it has been suggested to introduce different regulations according to the infrastructure of the cities in Turkey.

References

  • [1] Department of Economic and Social Affairs United Nation, “World Urbanization Prospects 2018,” Webpage, 2018. https://population.un.org/wup/.
  • [2] J. Jiao and S. Bai, “Understanding the shared e-scooter travels in Austin, TX,” ISPRS Int. J. Geo-Information, vol. 9, no. 2, 2020, doi: 10.3390/ijgi9020135.
  • [3] S. E. Bibri and J. Krogstie, “Smart sustainable cities of the future: An extensive interdisciplinary literature review,” Sustain. Cities Soc., vol. 31, pp. 183–212, 2017, doi: 10.1016/j.scs.2017.02.016.
  • [4] D. Hoornweg, L. Sugar, and C. L. T. Gómez, “Cities and greenhouse gas emissions: moving forward,” Environ. Urban., vol. 23, no. 1, pp. 207–227, 2011, doi: 10.1177/0956247810392270.
  • [5] C. Chavez-Baeza and C. Sheinbaum-Pardo, “Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area,” Energy, vol. 66, no. 2, pp. 624–634, 2014, doi: 10.1016/j.energy.2013.12.047.
  • [6] S. Das, “Competitive or Complementary : A Spatiotemporal Investigative Analysis into Austin ’ s Shared Micromobility Modes .,” The University of Texas at Austin, 2020.
  • [7] C. S. Smith and P. J. Schwieterman, “E-Scooter Scenarios: Evaluating the Potential Mobility Benefits of Shared Dockless Scooters in Chicago,” Chaddick Inst. Policy Ser., no. 1, pp. 6–8, 2018.
  • [8] N. Fearnley, E. Johnsson, and S. H. Berge, “Patterns of E-Scooter Use in Combination with Public Transport,” Findings, vol. 2019, pp. 1–7, 2020, doi: 10.32866/001c.13707.
  • [9] S. O’hern and N. Estgfaeller, “A scientometric review of powered micromobility,” Sustain., vol. 12, no. 22, pp. 1–21, 2020, doi: 10.3390/su12229505.
  • [10] Z. Zou, H. Younes, S. Erdoğan, and J. Wu, “Exploratory Analysis of Real-Time E-Scooter Trip Data in Washington, D.C.,” Transp. Res. Rec., vol. 2674, no. 8, pp. 285–299, 2020, doi: 10.1177/0361198120919760.
  • [11] OECD/ITF, “Safe Micromobility,” p. 98, 2020, [Online]. Available: https://www.itf-oecd.org/safe-micromobility.
  • [12] A. Demeyere, “Techno-economic analysis of micro-mobility providers : derivation of viability conditions,” 2020.
  • [13] S. Shaheen and A. Cohen, “Shared Micromobility Policy Toolkit,” pp. 1–34, 2019, doi: 10.7922/G2TH8JW7.
  • [14] W. Riggs and M. Kawashima, “Exploring Best Practice for Municipal E-Scooter Policy in the United States,” in 99th Annual Meeting of the Transportation Research Board, 2020, pp. 415–422.
  • [15] S. Shaheen, A. Cohen, and I. Zohdy, “Shared Mobility: Current Practices and Guiding Principles,” Fhwa-Hop-16-022 2., no. Washington D.C., p. 120, 2016.
  • [16] G. McKenzie, “Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, D.C.,” J. Transp. Geogr., vol. 78, no. June 2019, pp. 19–28, 2019, doi: 10.1016/j.jtrangeo.2019.05.007.
  • [17] J. Degele et al., “Identifying E-Scooter Sharing Customer Segments using Clustering,” in IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 2018, pp. 1–8.
  • [18] S. Gössling, “Integrating e-scooters in urban transportation: Problems, policies, and the prospect of system change,” Transp. Res. Part D Transp. Environ., vol. 79, no. January, p. 102230, 2020, doi: 10.1016/j.trd.2020.102230.
  • [19] D. Schellong, P. Sadek, C. Schaetzberger, and T. Barrack, “The Promise and Pitfalls of E-Scooter Sharing,” Bost. Consult. Gr., pp. 1–14, 2019.
  • [20] G. McKenzie, “Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, D.C.,” J. Transp. Geogr., vol. 78, no. May, pp. 19–28, 2019, doi: 10.1016/j.jtrangeo.2019.05.007.
  • [21] H. Younes, Z. Zou, J. Wu, and G. Baiocchi, “Comparing the Temporal Determinants of Dockless Scooter-share and Station-based Bike-share in Washington, D.C.,” Transp. Res. Part A Policy Pract., vol. 134, no. December 2019, pp. 308–320, 2020, doi: 10.1016/j.tra.2020.02.021.
  • [22] M. Kostrzewska and B. Macikowski, “Towards Hybrid Urban Mobility: Kick Scooter as a Means of Individual Transport in the City,” IOP Conf. Ser. Mater. Sci. Eng., vol. 245, no. 5, 2017, doi: 10.1088/1757-899X/245/5/052073.
  • [23] H. Moreau, L. de J. de Meux, V. Zeller, P. D’Ans, C. Ruwet, and W. M. J. Achten, “Dockless e-scooter: A green solution for mobility? Comparative case study between dockless e-scooters, displaced transport, and personal e-scooters,” Sustain., vol. 12, no. 5, 2020, doi: 10.3390/su12051803.
  • [24] S. He and K. G. Shin, “Dynamic Flow Distribution Prediction for Urban Dockless E-Scooter Sharing Reconfiguration,” Web Conf. 2020 - Proc. World Wide Web Conf. WWW 2020, pp. 133–143, 2020, doi: 10.1145/3366423.3380101.
  • [25] L. J. Mayhew and C. Bergin, “Impact of e-scooter injuries on Emergency Department imaging,” J. Med. Imaging Radiat. Oncol., vol. 63, no. 4, pp. 461–466, 2019, doi: 10.1111/1754-9485.12889.
  • [26] J. Rose, D. Schellong, C. Schaetzberger, and J. Hill, “How E-Scooters Can Win a Place in Urban Transport,” Bost. Consult. Gr., pp. 1–10, 2020.
  • [27] NACTO (National Association of City Transportation Officials), “Guidelines for Regulating Shared Micromobility,” no. September, pp. 1–56, 2019, [Online]. Available: https://nacto.org/wp-content/uploads/2019/09/NACTO_Shared_Micromobility_Guidelines_Web.pdf.
  • [28] A. de Bortoli and Z. Christoforou, “Consequential LCA for territorial and multimodal transportation policies: method and application to the free-floating e-scooter disruption in Paris,” J. Clean. Prod., vol. 273, p. 122898, 2020, doi: 10.1016/j.jclepro.2020.122898.
  • [29] Lime, “More Major European Cities Pass 1 Million E-Scooter Ride Milestone,” 2019. https://www.li.me/second street/more-major-european-cities-pass-1-million-e-scooter-ride-milestone (accessed Sep. 01, 2021).
  • [30] G. Dias, E. Arsenio, and P. Ribeiro, “The role of shared e-scooter systems in urban sustainability and resilience during the covid-19 mobility restrictions,” Sustain., vol. 13, no. 13, pp. 1–19, 2021, doi: 10.3390/su13137084.
  • [31] A. Li, P. Zhao, H. He, and K. W. Axhausen, “Understanding the variations of micro-mobility behavior before and during COVID-19 pandemic period,” 2009. [Online]. Available: https://doi.org/10.3929/ethz-a-010025751.
  • [32] K. Button, H. Frye, and D. Reaves, “Economic regulation and E-scooter networks in the USA,” Res. Transp. Econ., vol. 84, no. October, p. 100973, 2020, doi: 10.1016/j.retrec.2020.100973.
  • [33] J. MIN-JI, “Lime’s e-scooters arrive in Korea,” 2019. https://koreajoongangdaily.joins.com/news/article/article.aspx?aid=3068566 (accessed Sep. 01, 2021).
  • [34] PBOT, “2018 E-Scooter Pilot User Survey Results,” pp. 1–10, 2018, [Online]. Available: https://www.portlandoregon.gov/transportation/article/700916.
  • [35] “City of Santa Monica Shared Mobility Device Pilot Program User Survey Results Conducted 01-25-2019 to 02-15-2019,” 2019. [Online]. Available: https://www.smgov.net/uploadedFiles/Departments/PCD/Transportation/SharedMobility_UserSurveySummary_20190509_FINAL.PDF.
  • [36] H. Badia and E. Jenelius, “Shared e-scooter micromobility : A review of travel behavior , sustainability , infrastructure , safety and policies Shared e-scooter micromobility : A review of travel behavior , sustainability ,” no. March, 2021, doi: 10.13140/RG.2.2.19225.95841.
  • [37] 6t-bureau de recherche, “Uses and Users of Free-floating Electric Scooters in France,” 2019.
  • [38] M. Ensor, O. Maxwell, O. Bruce, and M. Industries, Mode shift to micromobility. 2021.
  • [39] SFMTA-San Francisco Metropolitan Transportation Agency, “Powered Scooter Share Mid-Pilot Evaluation,” San Francisco, California, 2019.
  • [40] D. Uluk et al., “E-scooter: initial knowledge about causes of accidents and injury patterns,” Notfall und Rettungsmedizin, vol. 23, no. 4, pp. 293–298, 2020, doi: 10.1007/s10049-019-00678-3.
  • [41] N. Haworth, A. Schramm, and D. Twisk, “Comparing the risky behaviours of shared and private e-scooter and bicycle riders in downtown Brisbane, Australia,” Accid. Anal. Prev., vol. 152, no. December 2020, p. 105981, 2021, doi: 10.1016/j.aap.2021.105981.
  • [42] M. Siman-Tov, I. Radomislensky, Israel Trauma Group, and K. Peleg, “The casualties from electric bike and motorized scooter road accidents,” Traffic Inj. Prev., vol. 18, no. 3, pp. 318–323, 2017, doi: 10.1080/15389588.2016.1246723.
  • [43] X. Zhang, M. Cui, Y. Gu, L. Stallones, and H. Xiang, “Trends in electric bike-related injury in China, 2004-2010.,” Asia-Pacific J. public Heal., vol. 27, no. 2, pp. NP1819-26, Mar. 2015, doi: 10.1177/1010539513496840.
  • [44] H. Kleinertz, D. Ntalos, F. Hennes, J. V. Nüchtern, K. H. Frosch, and D. M. Thiesen, “Accident mechanisms and injury patterns in E-scooter users. A retrospective analysis and comparison with cyclists,” Dtsch. Arztebl. Int., vol. 118, no. 8, pp. 117–121, 2021, doi: 10.3238/arztebl.m2021.0019.
  • [45] J. Yang et al., “Unsafe riding practice among electric bikers in Suzhou, China: An observational study,” BMJ Open, vol. 4, no. 1, 2014, doi: 10.1136/bmjopen-2013-003902.
  • [46] Austin Public Health and City of Austin, “Dockless Electric Injuries Study,” no. November 2018, p. 15, 2019.
  • [47] eit Urban Mobility, “Activity Output E-Micromobility Safety Assessment,” pp. 1–42, 2020.
  • [48] K. Markvica and E. Al, “E-Scooter as Environmentally Friendly Last Mile Option? Insights on Spatial and Infrastructural Implications for Urban Areas based on the Example of Vienna,” Conf. Pap., no. September, pp. 15–18, 2020.
  • [49] J. Hollingsworth, B. Copeland, and J. X. Johnson, “Are e-scooters polluters? the environmental impacts of shared dockless electric scooters,” Environ. Res. Lett., vol. 14, no. 8, 2019, doi: 10.1088/1748-9326/ab2da8.
  • [50] M. Masoud, M. Elhenawy, M. H. Almannaa, S. Q. Liu, S. Glaser, and A. Rakotonirainy, “Heuristic Approaches to Solve E-Scooter Assignment Problem,” IEEE Access, vol. 7, pp. 175093–175105, 2019, doi: 10.1109/ACCESS.2019.2957303.
  • [51] S. Severengiz, S. Finke, N. Schelte, and N. Wendt, “Life Cycle Assessment on the Mobility Service E-Scooter Sharing,” 2020 IEEE Eur. Technol. Eng. Manag. Summit, E-TEMS 2020, 2020, doi: 10.1109/E-TEMS46250.2020.9111817.
  • [52] S. Severengiz, N. Schelte, and S. Bracke, “Analysis of the environmental impact of e-scooter sharing services considering product reliability characteristics and durability,” Procedia CIRP, vol. 96, pp. 181–188, 2020, doi: 10.1016/j.procir.2021.01.072.
  • [53] M. Ridderstedt and D. Öhman, “Voi har kraftigt överdrivit elsparkcyklars klimatnytta,” Sveriges Radio, 2019. https://sverigesradio.se/artikel/7323721.
  • [54] Lufthansa Innovation Hub, “The environmental impact of today’s transport types,” TNMT, 2021. https://tnmt.com/infographics/carbon-emissions-by-transport-type/.
  • [55] Voi Technology, “Sustainability Statement,” 2019.
  • [56] D. Carrignon, “Connected and autonomous vehicles, electric scooter and their implications for road network design,” Transp. Res. Procedia, vol. 49, no. 2019, pp. 160–169, 2020, doi: 10.1016/j.trpro.2020.09.014.
  • [57] M. M. Sokołowski, “Renewable and citizen energy communities in the European Union: how (not) to regulate community energy in national laws and policies,” J. Energy Nat. Resour. Law, vol. 38, no. 3, pp. 289–304, 2020, doi: 10.1080/02646811.2020.1759247.
  • [58] R. Peace, “eScooter Laws and Regulations In The USA,” Electric Bike Report, 2021. https://electricbikereport.com/electric-scooter-laws-and-regulations/.
  • [59] D. Shinkle and S. Oren, “Electric Scooters | Laws Balance Public Safety and Micromobility Needs,” National Conference of State Legislatures, 2020. https://www.ncsl.org/bookstore/state-legislatures-magazine/trends-coronavirus-teen-vaping-e-scooters-and-more.aspx.
  • [60] J. K. Mathew, M. Liu, and D. M. Bullock, “Impact of Weather on Shared Electric Scooter Utilization,” 2019 IEEE Intell. Transp. Syst. Conf. ITSC 2019, pp. 4512–4516, 2019, doi: 10.1109/ITSC.2019.8917121.
  • [61] O. James, J. I. Swiderski, J. Hicks, D. Teoman, and R. Buehler, “Pedestrians and e-scooters: An initial look at e-scooter parking and perceptions by riders and non-riders,” Sustain., vol. 11, no. 20, 2019, doi: 10.3390/su11205591.
  • [62] R. Ratan et al., “The (digital) medium of mobility is the message: Examining the influence of e-scooter mobile app perceptions on e-scooter use intent,” Comput. Hum. Behav. Reports, vol. 3, no. December 2020, p. 100076, 2021, doi: 10.1016/j.chbr.2021.100076.
  • [63] M. C. BÖLEN and O. ÇELİKER, “Paylaşımlı Elektrikli Scooter Hizmetlerini Kullanma Niyetinde Etkili Olan Faktörler,” Atatürk Üniversitesi İktisadi ve İdari Bilim. Derg., 2021, doi: 10.16951/atauniiibd.898594.
  • [64] B. E. Sarıışık and Ö. Y. Ercoşkun, “Dünyada Ve Türkiye'de Mikro Hareketlilikte E-Scooter Sistemleri E-Scooters in the World and in Turkey as Micro Mobility Devices,” vol. 2, pp. 72–94, 2021.
There are 64 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Review
Authors

Hazal Güldür 0000-0003-3064-8476

Fatih Karaçor 0000-0003-1201-7857

Seda Hatipoğlu 0000-0002-4511-1914

Kürşat Çubuk 0000-0001-8155-7123

Publication Date April 30, 2022
Submission Date November 3, 2021
Acceptance Date April 11, 2022
Published in Issue Year 2022 Volume: 8 Issue: 1

Cite

IEEE H. Güldür, F. Karaçor, S. Hatipoğlu, and K. Çubuk, “Yeni Bir Kent İçi Ulaşım Türü: E-scooter”, GJES, vol. 8, no. 1, pp. 60–73, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg