Research Article
BibTex RIS Cite

Investigation of Nonlinear Displacement and Deformation Damage Limits of Reinforced Concrete Square Columns According to ASCESEI 41-17

Year 2022, Volume: 8 Issue: 1, 1 - 14, 30.04.2022

Abstract

The seismic performance of reinforced concrete columns is related to the expected damage limits under seismic loads and how this damage relates to safety of the structure. Accordingly, the estimation of reinforced concrete columns deformations become more critical than the estimation of internal forces since the deformations in the post elastic regions of the structure are well correlated with damage in these regions. In order to assess the performance of reinforced concrete columns under seismic loads, performance-based displacement and damage limits are proposed by certain codes. Adequacy of the displacement and damage limit levels given in the code such as ASCE/SEI-41 (2017) were evaluated by carrying out parametric studies for reinforced concrete columns. Reinforced concrete square columns are designed in parametric studies to present the effects of various parameters such as concrete compressive strength, axial load levels and transverse reinforcement ratio on performance-based damage limits. Performance limits corresponding to each performance levels obtained by ASCE/SEI-41 (2017) seismic code were compared. It is concluded that as the axial load levels increases, the damage limits become smaller, the amount of transverse reinforcement becomes more important at these load levels and the limitation stipulated by the regulation is highly effective.

Supporting Institution

-

Project Number

-

Thanks

The authors thank the reviewers who evaluated the article for their time and valuable comments and suggestions.

References

  • [1] L. Xiao-chun, H. Xiao-lei, “Performance index limits of high reinforced concrete shear wall components.” Journal of the Central South University of Technology, vol. 18, pp. 1248-1255, 2011. doi: https://doi.org/10.1007/s11771-011-0829-9.
  • [2] S. Foroughi, S. B. Yüksel, “Betonarme kolonların şekildeğiştirme esaslı hasar sınırlarının araştırılması.” Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi (UMAGD), vol. 11, no. 2, pp. 584-601, 2019. doi: https://doi.org/10.29137/umagd.519208.
  • [3] M. A. Özdemir, İ. Kazaz, S. G. Özkaya, “Evaluation and comparison of ultimate deformation limits for RC columns.” Engineering Structures, vol. 153, pp. 569-581, 2017. doi: https://dx.doi.org/10.1016/j.engstruct.2017.10.050.
  • [4] Z. I. Sakka, I. A. Assakkafa, J. S. Qazweenib, “Reliability based assessment of damaged concrete buildings.” Structural Engineering and Mechanics, vol. 65, no. 6. pp. 751-760, 2018. doi: http://dx.doi.org/10.12989/sem.2018.65.6.751.
  • [5] H. Jiang, X. Lu, J. Zhu, “Performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China.” Structural Engineering and Mechanics, vol. 43, no. 4. pp. 545-460, 2012. doi: https://doi.org/10.12989/sem.2012.43.4.545.
  • [6] X. C. Chen, Z. Z. Bai, F. T. K. Au, “Effect of Confinement on Flexural Ductility Design of Concrete Beams.” Computers and Concrete, vol. 20, no. 2, pp. 129-143, 2017. doi: https://doi.org/10.12989/cac.2017.20.2.129.
  • [7] J. C. V. Perez, J. Carlos, M. M. Mulder, “Improved Procedure for Determining the Ductility of Buildings under Seismic Loads.” Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, vol. 34, no. 1, pp. 1-8, 2018. doi: https://doi.org/10.23967/j.rimni.2018.03.001.
  • [8] S. B. Yüksel, S. Foroughi, “Analytical Investigation of Confined and Unconfined Concrete Strength of Reinforced Concrete Columns.” Konya Journal of Engineering Sciences, vol. 7 no. 3, pp. 611-629, 2019. doi: https://doi.org/10.36306/konjes.613880.
  • [9] S. Foroughi, S. B. Yuksel, “Investigation of the Moment-Curvature Relationship for Reinforced Concrete Square Columns.” Turkish Journal of Engineering, (TUJE), vol. 4, no. 1, pp. 36-46, 2020. doi: https://doi.org/10.31127/tuje.571598.
  • [10] İ. Kazaz, P. Gülkan, A. Yakut, “Performance limits for structural walls: An analytical perspective.” Engineering Structures, vol. 43, pp. 105-119, 2012. doi: https://doi.org/10.1016/j.engstruct.2012.05.011.
  • [11] Z. Xinxian, H. Xiaolei, Ji. Jing, Qi. Yongle, H. Chao, “Component-level Performance-based Seismic Assessment and Design Approach for Concrete Moment Frames.” The Open Civil Engineering Journal (TOCIEJ), vol. 10, no. 1, pp. 25-39, 2016. doi: https://doi.org/10.2174/1874149501610010025.
  • [12] ASCE Standard, 41, Seismic Evaluation and Retrofit of Existing Buildings, (ASCE/SEI 41-17), Published by the American Society of Civil Engineers, Reston, Virginia, 20191-4382, USA, 2017.
  • [13] Ghannoum W.M, Sivaramakrishnan B. ACI 369 rectangular column databases. 2012.
  • [14] Ghannoum W.M, Sivaramakrishnan B. ACI 369 circular column databases. 2012.
  • [15] Ghannoum W.M. Updates to modeling parameters and acceptance criteria for non-ductile and splice-deficient concrete columns”, 16th World Conf. on Earthquake Engineering, January 1–12, Santiago, Chile. International Association for Earthquake Engineering, Tokyo, 2017.
  • [16] H. Sezen, J. P. Moehle, “Shear Strength Model for Lightly Reinforced Concrete Columns.” Journal of Structural Engineering (ASCE), vol. 130, no. 11, pp. 1692-1703, 2004. doi: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1692).
  • [17] N. P. Gordon, “Prediction of Shear Strength and Ductility of Cyclically Loaded Reinforced Concrete Columns Using Artificial Intelligence.” Bachelors of Science in Civil Engineering University of Nevada, Las Vegas, 2008.
  • [18] J. B. Mander, M. J. N. Priestley, R. Park, “Theoretical stress-strain model for confined concrete.” Journal of Structural Engineering (ASCE), vol. 114, no. 8, pp. 1804-1826, 1988. doi: https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  • [19] T. Paulay, M. J. N. Priestley, “Stability of ductile structural walls.” ACI Structure Journal, vol. 90, no. 4, pp. 385-392, 1993. doi: http://worldcat.org/oclc/13846957.
  • [20] ACI 318-14., Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, U.S.A. 2014.
  • [21] TBEC., Turkish Building Earthquake Code, Specification for Buildings to be Built in Seismic Zones. Ministry of Public Works and Settlement Government of the Republic of Turkey, 2018.
  • [22] Computers and Structures, Inc. SAP2000, version 20.1.0, Integrated structural analysis and design software. Berkeley, CA; 2000.
  • [23] Uniform Building Code., International Council of Building Officials, Whittier, California, 1997.
  • [24] R. Park, T. Paulay, “Reinforced concrete structures.” Wiley, New York, 1975.

Betonarme Kare Kolonların Doğrusal Olmayan Yerdeğiştirme ve Deformasyon Hasar Sınırlarının ASCESEI 41-17’ye göre İncelenmesi

Year 2022, Volume: 8 Issue: 1, 1 - 14, 30.04.2022

Abstract

Betonarme kolonların sismik performansı, sismik yükler altında beklenen hasar sınırları ve bu hasarın yapının güvenliği ile nasıl ilişkili olduğu ile ilgilidir. Buna göre, betonarme kolon deformasyonlarının tahmini, yapının elastik olmayan bölgelerindeki deformasyonlar ile bu bölgelerdeki hasar arasında iyi bir korelasyon olduğundan, iç kuvvetlerin tahmininden daha kritik hale gelmektedir. Betonarme kolonların sismik yükler altındaki performansını değerlendirmek için performansa dayalı deformasyon ve hasar sınırları yönetmeliklerce önerilmektedir. ASCE/SEI-41 (2017) gibi sismik yönetmelikte verilen deformasyon ve hasar sınır seviyelerinin yeterliliği, betonarme kolonlar için parametrik çalışmalar yapılarak değerlendirilmiştir. Parametrik olarak beton basınç dayanımı, eksenel yük seviyesi ve enine donatı oranı gibi tasarım parametrelerin performansa dayalı hasar sınırları üzerindeki etkilerini araştırmak için betonarme kare en-kesitli kolon modelleri tasarlanmıştır. ASCE/SEI-41 (2017) yönetmeliği ile elde edilen her bir performans seviyesine karşılık gelen performans limitleri karşılaştırılmıştır. Eksenel yük seviyeleri arttıkça hasar sınırları azaldığı, enine donatı oranının daha önemli hale geldiği ve yönetmelikte öngörülen sınırlamanın oldukça etkili olduğu sonucuna varılmıştır.

Project Number

-

References

  • [1] L. Xiao-chun, H. Xiao-lei, “Performance index limits of high reinforced concrete shear wall components.” Journal of the Central South University of Technology, vol. 18, pp. 1248-1255, 2011. doi: https://doi.org/10.1007/s11771-011-0829-9.
  • [2] S. Foroughi, S. B. Yüksel, “Betonarme kolonların şekildeğiştirme esaslı hasar sınırlarının araştırılması.” Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi (UMAGD), vol. 11, no. 2, pp. 584-601, 2019. doi: https://doi.org/10.29137/umagd.519208.
  • [3] M. A. Özdemir, İ. Kazaz, S. G. Özkaya, “Evaluation and comparison of ultimate deformation limits for RC columns.” Engineering Structures, vol. 153, pp. 569-581, 2017. doi: https://dx.doi.org/10.1016/j.engstruct.2017.10.050.
  • [4] Z. I. Sakka, I. A. Assakkafa, J. S. Qazweenib, “Reliability based assessment of damaged concrete buildings.” Structural Engineering and Mechanics, vol. 65, no. 6. pp. 751-760, 2018. doi: http://dx.doi.org/10.12989/sem.2018.65.6.751.
  • [5] H. Jiang, X. Lu, J. Zhu, “Performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China.” Structural Engineering and Mechanics, vol. 43, no. 4. pp. 545-460, 2012. doi: https://doi.org/10.12989/sem.2012.43.4.545.
  • [6] X. C. Chen, Z. Z. Bai, F. T. K. Au, “Effect of Confinement on Flexural Ductility Design of Concrete Beams.” Computers and Concrete, vol. 20, no. 2, pp. 129-143, 2017. doi: https://doi.org/10.12989/cac.2017.20.2.129.
  • [7] J. C. V. Perez, J. Carlos, M. M. Mulder, “Improved Procedure for Determining the Ductility of Buildings under Seismic Loads.” Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, vol. 34, no. 1, pp. 1-8, 2018. doi: https://doi.org/10.23967/j.rimni.2018.03.001.
  • [8] S. B. Yüksel, S. Foroughi, “Analytical Investigation of Confined and Unconfined Concrete Strength of Reinforced Concrete Columns.” Konya Journal of Engineering Sciences, vol. 7 no. 3, pp. 611-629, 2019. doi: https://doi.org/10.36306/konjes.613880.
  • [9] S. Foroughi, S. B. Yuksel, “Investigation of the Moment-Curvature Relationship for Reinforced Concrete Square Columns.” Turkish Journal of Engineering, (TUJE), vol. 4, no. 1, pp. 36-46, 2020. doi: https://doi.org/10.31127/tuje.571598.
  • [10] İ. Kazaz, P. Gülkan, A. Yakut, “Performance limits for structural walls: An analytical perspective.” Engineering Structures, vol. 43, pp. 105-119, 2012. doi: https://doi.org/10.1016/j.engstruct.2012.05.011.
  • [11] Z. Xinxian, H. Xiaolei, Ji. Jing, Qi. Yongle, H. Chao, “Component-level Performance-based Seismic Assessment and Design Approach for Concrete Moment Frames.” The Open Civil Engineering Journal (TOCIEJ), vol. 10, no. 1, pp. 25-39, 2016. doi: https://doi.org/10.2174/1874149501610010025.
  • [12] ASCE Standard, 41, Seismic Evaluation and Retrofit of Existing Buildings, (ASCE/SEI 41-17), Published by the American Society of Civil Engineers, Reston, Virginia, 20191-4382, USA, 2017.
  • [13] Ghannoum W.M, Sivaramakrishnan B. ACI 369 rectangular column databases. 2012.
  • [14] Ghannoum W.M, Sivaramakrishnan B. ACI 369 circular column databases. 2012.
  • [15] Ghannoum W.M. Updates to modeling parameters and acceptance criteria for non-ductile and splice-deficient concrete columns”, 16th World Conf. on Earthquake Engineering, January 1–12, Santiago, Chile. International Association for Earthquake Engineering, Tokyo, 2017.
  • [16] H. Sezen, J. P. Moehle, “Shear Strength Model for Lightly Reinforced Concrete Columns.” Journal of Structural Engineering (ASCE), vol. 130, no. 11, pp. 1692-1703, 2004. doi: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1692).
  • [17] N. P. Gordon, “Prediction of Shear Strength and Ductility of Cyclically Loaded Reinforced Concrete Columns Using Artificial Intelligence.” Bachelors of Science in Civil Engineering University of Nevada, Las Vegas, 2008.
  • [18] J. B. Mander, M. J. N. Priestley, R. Park, “Theoretical stress-strain model for confined concrete.” Journal of Structural Engineering (ASCE), vol. 114, no. 8, pp. 1804-1826, 1988. doi: https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  • [19] T. Paulay, M. J. N. Priestley, “Stability of ductile structural walls.” ACI Structure Journal, vol. 90, no. 4, pp. 385-392, 1993. doi: http://worldcat.org/oclc/13846957.
  • [20] ACI 318-14., Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, U.S.A. 2014.
  • [21] TBEC., Turkish Building Earthquake Code, Specification for Buildings to be Built in Seismic Zones. Ministry of Public Works and Settlement Government of the Republic of Turkey, 2018.
  • [22] Computers and Structures, Inc. SAP2000, version 20.1.0, Integrated structural analysis and design software. Berkeley, CA; 2000.
  • [23] Uniform Building Code., International Council of Building Officials, Whittier, California, 1997.
  • [24] R. Park, T. Paulay, “Reinforced concrete structures.” Wiley, New York, 1975.
There are 24 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Saeid Foroughi 0000-0002-7556-2118

Bahadır Yüksel 0000-0002-4175-1156

Project Number -
Publication Date April 30, 2022
Submission Date May 22, 2021
Acceptance Date March 29, 2022
Published in Issue Year 2022 Volume: 8 Issue: 1

Cite

IEEE S. Foroughi and B. Yüksel, “Investigation of Nonlinear Displacement and Deformation Damage Limits of Reinforced Concrete Square Columns According to ASCESEI 41-17”, GJES, vol. 8, no. 1, pp. 1–14, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg