Research Article
BibTex RIS Cite

Düşük/Sıfır Karbonlu Binalara Yönelik İç veya Dış Isı Yalıtımı? Kritik Bir Rapor

Year 2023, Volume: 9 Issue: 3, 435 - 442, 01.01.2024

Abstract

Düşük karbonlu toplumlar yaratma çabası artık sürdürülebilir bir dünyaya duyulan ihtiyaçtan daha fazlasıdır. Dünya enerji tüketimi rakamlarını ve sera gazı emisyonlarını azaltmak amacıyla yapılan sektörel enerji analizlerine göre, Uluslararası Enerji Ajansı'nın (IEA) 2050 yılına kadar net sıfır hedefi kapsamında en dikkat çekici potansiyel önlemlerin başında binalar geliyor. Düşük/sıfır karbon standartları Bu bağlamda geliştirilen ve temel olarak binalar için düşük emisyonlu tasarım ve operasyonel performans öneren bir proje. Binalarda bu standartları karşılamak için geleneksel yalıtım malzemeleri ve tekniklerini kullanmak yerine ısı yalıtımı gibi sert önlemlere ihtiyaç duyulmaktadır. Isıl süper yalıtım malzemeleri arasında aerojel battaniyeler (AB'ler) ve vakum yalıtım panelleri (VIP'ler) çok düşük ısı iletkenlik aralıkları nedeniyle her geçen gün dikkat çekmektedir. AB'ler ve VIP'lerle donatılan bina kaplamalarının ince, hafif ve termal açıdan yüksek dirençli özelliklerine rağmen, termal köprüler, sıcak ve soğuk noktalar, dayanıklılık ve özellikle maliyet sorunları gibi bazı zorluklar hâlâ mevcut. Bahsedilen zorluklar genellikle iç veya dış yalıtım konusunda yanlış karar verildiğinde ortaya çıkar. İç ve dış termal süper yalıtımın güçlendirilmesinin artıları ve eksileri arasında hâlâ çok sayıda tutarsızlık var. Dolayısıyla bu kısa yazıda, güçlendirilmiş binaların yerinde performans bulguları üzerinden söz konusu tartışma ele alınmaktadır.

References

  • [1] E. Cuce and S. Riffat, “A comprehensive assessment of sectoral energy consumption in the UK: past, present and future,” International Journal of Low-carbon Technologies, vol. 11, no. 3, pp. 424–430, Jun. 2015, doi:10.1093/ijlct/ctv013
  • [2] E. Cuce, “An overview of domestic energy consumption in the UK: past, present and future,” International Journal of Ambient Energy, vol. 37, no. 4, pp. 428–435, Oct. 2014, doi:10.1080/01430750.2014.973120
  • [3] E. Cuce, “Accurate and reliable U -value assessment of argon-filled double glazed windows: A numerical and experimental investigation,” Energy and Buildings, vol. 171, pp. 100–106, Jul. 2018, doi:10.1016/j.enbuild.2018.04.036
  • [4] E. Cuce, “Role of airtightness in energy loss from windows: Experimental results from in-situ tests,” Energy and Buildings, vol. 139, pp. 449–455, Mar. 2017, doi:10.1016/j.enbuild.2017.01.027
  • [5] E. Cuce, P. M. Cuce, C. J. Wood, and S. Riffat, “Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings,” Energy and Buildings, vol. 77, pp. 28–39, Jul. 2014, doi:10.1016/j.enbuild.2014.03.034
  • [6] J. Wernery, F. Mancebo, W. J. Malfait, M. J. O’Connor, and B. P. Jelle, “The economics of thermal superinsulation in buildings,” Energy and Buildings, vol. 253, p. 111506, Dec. 2021, doi:10.1016/j.enbuild.2021.111506
  • [7] R. Bætens et al., “Vacuum insulation panels for building applications: A review and beyond,” Energy and Buildings, vol. 42, no. 2, pp. 147–172, Feb. 2010, doi:10.1016/j.enbuild.2009.09.005
  • [8] C. Li et al.,“Silica Aerogels: From materials research to industrial applications,” International Materials Reviews, pp. 1–39, 2023. doi:10.1080/09506608.2023.2167547
  • [9] E. Cuce, P. M. Cuce, C. J. Wood, and S. Riffat, “Toward aerogel based thermal superinsulation in buildings: A comprehensive review,” Renewable & Sustainable Energy Reviews, vol. 34, pp. 273–299, Jun. 2014, doi:10.1016/j.rser.2014.03.017
  • [10] S. Mahesh and S. C. Joshi, “Thermal conductivity variations with composition of gelatin-silica aerogel-sodium dodecyl sulfate with functionalized multi-walled carbon nanotube doping in their composites,” International Journal of Heat and Mass Transfer, vol. 87, pp. 606–615, 2015. doi:10.1016/j.ijheatmasstransfer.2015.04.046
  • [11] S.B. Riffatand and G. Qiu, “A review of state-of-the-art aerogel applications in buildings,” International Journal of Low-Carbon Technologies, vol. 8, no.1, pp. 1–6, 2012. doi:10.1093/ijlct/cts001
  • [12] S. Ahmad, S. Ahmad and J. N. Sheikh, “Silica centered aerogels as advanced functional material and their applications: A Review,” Journal of Non-Crystalline Solids, vol. 611, p. 122322. doi:10.1016/j.jnoncrysol.2023.122322
  • [13] Z. Kovács, A. Csík and Á. Lakatos, “Thermal stability investigations of different aerogel insulation materials at elevated temperature,” Thermal Science and Engineering Progress, vol. 42, p. 101906, 2023. doi:10.1016/j.tsep.2023.101906
  • [14] D. Bozsaky, “Application of nanotechnology based thermal insulation materials in building construction,” Acta Technica Jaurinensis, vol. 9, no. 1, p. 29, 2016. doi:10.14513/actatechjaur.v9.n1.391
  • [15] S.S. Alotaibi, and S. Riffat, “Vacuum insulated panels for sustainable buildings: A review of research and applications,” International Journal of Energy Research, vol 38, no. 1, pp. 1–19, 2013. doi:10.1002/er.3101
  • [16] N. Simões, et al., “Can vacuum insulation panels be cost-effective when applied in building façades?,” Building and Environment, vol. 191, p. 107602, 2021. doi:10.1016/j.buildenv.2021.107602
  • [17] P. Johansson et al., “Interior insulation retrofit of a historical brick wall using vacuum insulation panels: Hygrothermal numerical simulations and laboratory investigations,” Building and Environment, vol. 79, pp. 31–45, Sep. 2014, doi:10.1016/j.buildenv.2014.04.014.
  • [18] E. Cuce, P. M. Cuce, C. J. Wood, and S. Riffat, “Toward aerogel based thermal superinsulation in buildings: A comprehensive review,” Renewable & Sustainable Energy Reviews, vol. 34, pp. 273–299, Jun. 2014, doi:10.1016/j.rser.2014.03.017
  • [19] E. Cuce and P. M. Cuce, “The impact of internal aerogel retrofitting on the thermal bridges of residential buildings: An experimental and statistical research,” Energy and Buildings, vol. 116, pp. 449–454, Mar. 2016, doi:10.1016/j.enbuild.2016.01.033
  • [20] E. Cuce and S. Riffat, “Vacuum tube window technology for highly insulating building fabric: An experimental and numerical investigation,” Vacuum, vol. 111, pp. 83–91, Jan. 2015, doi:10.1016/j.vacuum.2014.10.002
  • [21] E. Moretti, F. Merli, E. Cuce, and C. Buratti, “Thermal and acoustic properties of aerogels: Preliminary investigation of the influence of granule size,” Energy Procedia, vol. 111, pp. 472–480, Mar. 2017, doi:10.1016/j.egypro.2017.03.209
  • [22] E. Cuce and S. Riffat, “Aerogel-Assisted Support Pillars for thermal Performance Enhancement of vacuum glazing: a CFD research for a commercial product,” Arabian Journal for Science and Engineering, vol. 40, no. 8, pp. 2233–2238, Jun. 2015, doi:10.1007/s13369-015-1727-5
  • [23] K. Biswas, T. Patel, S. Shrestha, D. L. Smith, and A. O. Desjarlais, “Whole building retrofit using vacuum insulation panels and energy performance analysis,” Energy and Buildings, vol. 203, p. 109430, Nov. 2019, doi:10.1016/j.enbuild.2019.109430
  • [24] P. Johansson, C.-E. Hagentoft, and A. S. Kalagasidis, “Retrofitting of a listed brick and wood building using vacuum insulation panels on the exterior of the facade: Measurements and simulations,” Energy and Buildings, vol. 73, pp. 92–104, Apr. 2014, doi:10.1016/j.enbuild.2014.01.019
  • [25] A. Uriarte, I. Garai, A. Ferdinando, A. Erkoreka, O. Nicolas, and E. Barreiro, “Vacuum insulation panels in construction solutions for energy efficient retrofitting of buildings. Two case studies in Spain and Sweden,” Energy and Buildings, vol. 197, pp. 131–139, Aug. 2019, doi:10.1016/j.enbuild.2019.05.039

Internal Or External Thermal Superinsulation Towards Low/Zero Carbon Buildings? A Critical Report

Year 2023, Volume: 9 Issue: 3, 435 - 442, 01.01.2024

Abstract

The effort to create low-carbon societies is now more than just a need for a sustainable world. According to the sectoral energy analyses carried out to reduce world energy consumption figures and greenhouse gas emissions, buildings are one of the most striking potential measures within the net zero target of the International Energy Agency (IEA) by 2050. Low/zero carbon standards are developed in this regard, which basically propose low-emission design and operational performance for buildings. Rather than using conventional insulation materials and techniques, drastic measures like thermal superinsulation are required to meet these standards in buildings. Among thermal superinsulation materials, aerogel blankets (ABs) and vacuum insulation panels (VIPs) attract attention day after day owing to their very low thermal conductivity ranges. Despite the slim, lightweight, and highly thermally resistive features of building envelopes retrofitted with ABs and VIPs, there are still some challenges, such as thermal bridges, hot and cold spots, durability, and especially cost issues. The aforesaid challenges usually take place when a wrong decision is made to internal or external insulation. There are still numerous discrepancies in the pros and cons of internal and external thermal superinsulation retrofit. Therefore, this short communication deals with the said discussion through the in-situ performance findings of retrofitted buildings.

References

  • [1] E. Cuce and S. Riffat, “A comprehensive assessment of sectoral energy consumption in the UK: past, present and future,” International Journal of Low-carbon Technologies, vol. 11, no. 3, pp. 424–430, Jun. 2015, doi:10.1093/ijlct/ctv013
  • [2] E. Cuce, “An overview of domestic energy consumption in the UK: past, present and future,” International Journal of Ambient Energy, vol. 37, no. 4, pp. 428–435, Oct. 2014, doi:10.1080/01430750.2014.973120
  • [3] E. Cuce, “Accurate and reliable U -value assessment of argon-filled double glazed windows: A numerical and experimental investigation,” Energy and Buildings, vol. 171, pp. 100–106, Jul. 2018, doi:10.1016/j.enbuild.2018.04.036
  • [4] E. Cuce, “Role of airtightness in energy loss from windows: Experimental results from in-situ tests,” Energy and Buildings, vol. 139, pp. 449–455, Mar. 2017, doi:10.1016/j.enbuild.2017.01.027
  • [5] E. Cuce, P. M. Cuce, C. J. Wood, and S. Riffat, “Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings,” Energy and Buildings, vol. 77, pp. 28–39, Jul. 2014, doi:10.1016/j.enbuild.2014.03.034
  • [6] J. Wernery, F. Mancebo, W. J. Malfait, M. J. O’Connor, and B. P. Jelle, “The economics of thermal superinsulation in buildings,” Energy and Buildings, vol. 253, p. 111506, Dec. 2021, doi:10.1016/j.enbuild.2021.111506
  • [7] R. Bætens et al., “Vacuum insulation panels for building applications: A review and beyond,” Energy and Buildings, vol. 42, no. 2, pp. 147–172, Feb. 2010, doi:10.1016/j.enbuild.2009.09.005
  • [8] C. Li et al.,“Silica Aerogels: From materials research to industrial applications,” International Materials Reviews, pp. 1–39, 2023. doi:10.1080/09506608.2023.2167547
  • [9] E. Cuce, P. M. Cuce, C. J. Wood, and S. Riffat, “Toward aerogel based thermal superinsulation in buildings: A comprehensive review,” Renewable & Sustainable Energy Reviews, vol. 34, pp. 273–299, Jun. 2014, doi:10.1016/j.rser.2014.03.017
  • [10] S. Mahesh and S. C. Joshi, “Thermal conductivity variations with composition of gelatin-silica aerogel-sodium dodecyl sulfate with functionalized multi-walled carbon nanotube doping in their composites,” International Journal of Heat and Mass Transfer, vol. 87, pp. 606–615, 2015. doi:10.1016/j.ijheatmasstransfer.2015.04.046
  • [11] S.B. Riffatand and G. Qiu, “A review of state-of-the-art aerogel applications in buildings,” International Journal of Low-Carbon Technologies, vol. 8, no.1, pp. 1–6, 2012. doi:10.1093/ijlct/cts001
  • [12] S. Ahmad, S. Ahmad and J. N. Sheikh, “Silica centered aerogels as advanced functional material and their applications: A Review,” Journal of Non-Crystalline Solids, vol. 611, p. 122322. doi:10.1016/j.jnoncrysol.2023.122322
  • [13] Z. Kovács, A. Csík and Á. Lakatos, “Thermal stability investigations of different aerogel insulation materials at elevated temperature,” Thermal Science and Engineering Progress, vol. 42, p. 101906, 2023. doi:10.1016/j.tsep.2023.101906
  • [14] D. Bozsaky, “Application of nanotechnology based thermal insulation materials in building construction,” Acta Technica Jaurinensis, vol. 9, no. 1, p. 29, 2016. doi:10.14513/actatechjaur.v9.n1.391
  • [15] S.S. Alotaibi, and S. Riffat, “Vacuum insulated panels for sustainable buildings: A review of research and applications,” International Journal of Energy Research, vol 38, no. 1, pp. 1–19, 2013. doi:10.1002/er.3101
  • [16] N. Simões, et al., “Can vacuum insulation panels be cost-effective when applied in building façades?,” Building and Environment, vol. 191, p. 107602, 2021. doi:10.1016/j.buildenv.2021.107602
  • [17] P. Johansson et al., “Interior insulation retrofit of a historical brick wall using vacuum insulation panels: Hygrothermal numerical simulations and laboratory investigations,” Building and Environment, vol. 79, pp. 31–45, Sep. 2014, doi:10.1016/j.buildenv.2014.04.014.
  • [18] E. Cuce, P. M. Cuce, C. J. Wood, and S. Riffat, “Toward aerogel based thermal superinsulation in buildings: A comprehensive review,” Renewable & Sustainable Energy Reviews, vol. 34, pp. 273–299, Jun. 2014, doi:10.1016/j.rser.2014.03.017
  • [19] E. Cuce and P. M. Cuce, “The impact of internal aerogel retrofitting on the thermal bridges of residential buildings: An experimental and statistical research,” Energy and Buildings, vol. 116, pp. 449–454, Mar. 2016, doi:10.1016/j.enbuild.2016.01.033
  • [20] E. Cuce and S. Riffat, “Vacuum tube window technology for highly insulating building fabric: An experimental and numerical investigation,” Vacuum, vol. 111, pp. 83–91, Jan. 2015, doi:10.1016/j.vacuum.2014.10.002
  • [21] E. Moretti, F. Merli, E. Cuce, and C. Buratti, “Thermal and acoustic properties of aerogels: Preliminary investigation of the influence of granule size,” Energy Procedia, vol. 111, pp. 472–480, Mar. 2017, doi:10.1016/j.egypro.2017.03.209
  • [22] E. Cuce and S. Riffat, “Aerogel-Assisted Support Pillars for thermal Performance Enhancement of vacuum glazing: a CFD research for a commercial product,” Arabian Journal for Science and Engineering, vol. 40, no. 8, pp. 2233–2238, Jun. 2015, doi:10.1007/s13369-015-1727-5
  • [23] K. Biswas, T. Patel, S. Shrestha, D. L. Smith, and A. O. Desjarlais, “Whole building retrofit using vacuum insulation panels and energy performance analysis,” Energy and Buildings, vol. 203, p. 109430, Nov. 2019, doi:10.1016/j.enbuild.2019.109430
  • [24] P. Johansson, C.-E. Hagentoft, and A. S. Kalagasidis, “Retrofitting of a listed brick and wood building using vacuum insulation panels on the exterior of the facade: Measurements and simulations,” Energy and Buildings, vol. 73, pp. 92–104, Apr. 2014, doi:10.1016/j.enbuild.2014.01.019
  • [25] A. Uriarte, I. Garai, A. Ferdinando, A. Erkoreka, O. Nicolas, and E. Barreiro, “Vacuum insulation panels in construction solutions for energy efficient retrofitting of buildings. Two case studies in Spain and Sweden,” Energy and Buildings, vol. 197, pp. 131–139, Aug. 2019, doi:10.1016/j.enbuild.2019.05.039
There are 25 citations in total.

Details

Primary Language English
Subjects Construction Materials, Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Articles
Authors

Ayşe Pınar Mert Cüce 0000-0002-6522-7092

Erdem Cüce 0000-0003-0150-4705

Emre Alvur 0000-0002-4771-5025

Publication Date January 1, 2024
Submission Date September 23, 2023
Acceptance Date December 11, 2023
Published in Issue Year 2023 Volume: 9 Issue: 3

Cite

IEEE A. P. Mert Cüce, E. Cüce, and E. Alvur, “Internal Or External Thermal Superinsulation Towards Low/Zero Carbon Buildings? A Critical Report”, GJES, vol. 9, no. 3, pp. 435–442, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg