Research Article
BibTex RIS Cite

Mechanical Properties of SLJs with Graphene and MWCNT Nanoparticle-Doped Hybrid Polyurethane Adhesives on Epoxy-Based Carbon Fiber Reinforced Composite Plates

Year 2025, Issue: Erken Görünüm, 1 - 15

Abstract

In this study, we investigated the mechanical effect of by weight of 0.05%, 0.1% and 0.15% Graphene Nanoplates (GNPs) and MWCNTs doped polyurethane adhesives on single lap joint of Epoxy based and Carbon Fiber Reinforced Composite (CFRP) plates. First of all, Nanocomposite adhesive was produced by adding different weight ratios of nanoparticles into polyurethane adhesive. Then, the tensile test samples were produced using these adhesives and tensile tests were performed in accordance with the ASTM D 882 standard. According to the obtained results, the additive ratios showing the best mechanical properties were determined and single lap joints (SLJ) were produced. Then, the mechanical properties of the SLJ were tested in accordance with the ASTM D1002-10 standard under a constant tensile loading ratio. The highest tensile strength was observed in the 05GR15CNT sample with an increase of 52.67% (14.58 MPa) among the tensile test specimens. On the other hand, the highest shear strength was obtained in the 10GR10CNTSLJ sample with an increase of 14.80% (15.51 MPa) for the SLJ specimens. The distribution of the nanoparticles and the morphology of the failure surfaces were analyzed by scanning electron microscopy (SEM) images.

Ethical Statement

The authors declare no conflict of interest.

Supporting Institution

NECMETTİN ERBAKAN ÜNİVERİSİTESİ

Project Number

191319006

Thanks

This study was funded by the Scientific Research Projects Coordination Unit of Necmettin Erbakan University under project number 191319006.

References

  • [1] ASTM D907, "Standard Terminology of Adhesives," American Society for Testing and Materials. 2011. doi: 10.1520/D0907-12A.2
  • [2] A. Y. Kanani, X. Hou, and J. Ye, "A novel dissimilar single-lap joint with interfacial stiffness improvement," Composite Structures, vol. 252, Nov. 2020. doi: 10.1016/J.COMPSTRUCT.2020.112741
  • [3] A. J. Kinloch, "Adhesion and Adhesives," Dordrecht: Springer Netherlands, 1987. doi: 10.1007/978-94-015-7764-9
  • [4] H. Dodiuk, I. Belinski, A. Dotan, and S. Kenig, "Polyurethane adhesives containing functionalized nanoclay," Journal of Adhesion Science and Technology, vol. 20, no. 12, pp. 1345–1355, 2006. doi: 10.1163/156856106778456573
  • [5] P. Galvez, J. Abenojar, and M. A. Martinez, "Durability of steel-CFRP structural adhesive joints with polyurethane adhesives," Composites Part B: Engineering, vol. 165, pp. 1–9, May 2019. doi: 10.1016/j.compositesb.2018.11.097
  • [6] N. Naat, Y. Boutar, S. Naïmi, S. Mezlini, and L. F. M. Da Silva, "Effect of surface texture on the mechanical performance of bonded joints: a review," The Journal of Adhesion, vol. 99, no. 2, pp. 166–258, Jan. 2023. doi: 10.1080/00218464.2021.2008370
  • [7] J. M. Wernik and S. A. Meguid, "On the mechanical characterization of carbon nanotube reinforced epoxy adhesives," Materials and Design, vol. 59, pp. 19–32, 2014. doi: 10.1016/j.matdes.2014.02.034
  • [8] C. Guo et al., "Mechanical and thermal properties of multiwalled carbon-nanotube-reinforced Al2O3 nanocomposites," Ceramics International, 2020. doi: 10.1016/j.ceramint.2020.04.039
  • [9] H. Ejaz, A. Mubashar, E. Uddin, Z. Ali, and N. Arif, "Effect of functionalised and non-functionalised GNPs addition on strength properties of high viscous epoxy adhesive and lap shear joints," Polymer Testing, vol. 113, p. 107680, 2022. doi: 10.1016/j.polymertesting.2022.107680
  • [10] M. De Volder, S. Tawfick, R. Baughman, and A. J. Hart, "Carbon Nanotubes: Present and Future Commercial Application," Science, vol. 339, pp. 535–539, 2013. doi: 10.1126/science.1222453
  • [11] G. Otorgust, H. Dodiuk, S. Kenig, and R. Tenne, "Important insights into polyurethane nanocomposite-adhesives; a comparative study between INT-WS2 and CNT," European Polymer Journal, vol. 89, pp. 281–300, Apr. 2017. doi: 10.1016/J.EURPOLYMJ.2017.02.027
  • [12] Ö. Özbek and M. Çakır, "MWCNT and Nano-silica Hybrids Effect on Mechanical and Fracture Characterization of Single Lap Joints of GFRP plates," International Journal of Adhesion and Adhesives , vol. 117, p. 103159, 2022. doi: 10.1016/j.ijadhadh.2022.103159
  • [13] Z. Jia and G. Yuan, "Numerical study on the mechanical behavior of a polyurethane adhesive under high strain rate," Composites Part B: Engineering, vol. 158, pp. 131–140, 2019. doi: 10.1016/j.compositesb.2018.08.110
  • [14] Z. Jia, J. Yu, Q. Liu, S. Yu, and Z. Wang, "Functionally graded adhesive joints with exceptional strength and toughness by graphene nanoplatelets reinforced epoxy adhesives," International Journal of Adhesion and Adhesives, vol. 125, p. 103402, Jul. 2023. doi: 10.1016/j.ijadhadh.2023.103402
  • [15] H. Ejaz, A. Mubashar, E. Uddin, Z. Ali, and N. Arif, "Influence of MWCNTs on Strength Properties of High Viscous Epoxy Adhesive and Fracture Behavior of Adhesively Bonded Joints," Theoretical and Applied Fracture Mechanics, vol. 120, p. 103412, 2022. doi: 10.1016/j.tafmec.2022.103412
  • [16] H. Ejaz, A. Mubashar, M. A. M, and S. Waqar, "Effect of GNP and MWCNT Addition on Lap Shear Strength of Adhesively Bonded Joints," in 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), IEEE, Aug. 2022. pp. 116–121. doi: 10.1109/IBCAST54850.2022.9990107
  • [17] A. Hallal, A. Elmarakbi, A. Shaito, and H. El-Hage, "Overview of Composite Materials and their Automotive Applications," Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness, pp. 1–28, 2013. doi: 10.1002/9781118535288.CH1
  • [18] ASTM D638, "Standard Test Method for Tensile Properties of Plastic," Available: https://www.astm.org/d0638-10.html. [Accessed: Oct. 09, 2022].
  • [19] ASTM D1002-10, "Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal)," in ASTM Book of Standards, ASTM International, 2019. pp. 1–5. doi: 10.1520/D1002-10R19
  • [20] M. V. Cakir and D. Kinay, "MWCNT, nano‐silica, and nano‐clay additives effects on adhesion performance of dissimilar materials bonded joints," Polymer Composites, vol. 42, no. 11, pp. 5880–5892, Nov. 2021. doi: 10.1002/pc.26268
  • [21] X. Jia, B. Liu, L. Huang, D. Hui, and X. Yang, "Numerical analysis of synergistic reinforcing effect of silica nanoparticle–MWCNT hybrid on epoxy-based composites," Composites Part B: Engineering, vol. 54, pp. 133–137, Nov. 2013. doi: 10.1016/j.compositesb.2013.04.002
  • [22] M. S. Goyat, S. Suresh, S. Bahl, S. Halder, and P. K. Ghosh, "Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite," Materials Chemistry and Physics, vol. 166, pp. 144–152, 2015. doi: 10.1016/j.matchemphys.2015.09.038
  • [23] M. Rashad et al., "Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys," Journal of Magnesium and Alloys, vol. 1, no. 3, pp. 242–248, 2013. doi: 10.1016/j.jma.2013.09.004
  • [24] F. Ghadami, M. R. Dadfar, and M. Kazazi, "Hot-cured epoxy-nanoparticulate-filled nanocomposites: Fracture toughness behavior," Engineering Fracture Mechanics , vol. 162, pp. 193–200, 2016. doi: 10.1016/j.engfracmech.2016.05.016
  • [25] R. Rodríguez, B. Pérez, and S. Flórez, "Effect of different nanoparticles on mechanical properties and curing behavior of thermoset polyurethane adhesives," in Journal of Adhesion, Taylor and Francis Inc., 2014. pp. 848–859. doi: 10.1080/00218464.2014.893509
  • [26] Y. Wei, X. Jin, Q. Luo, Q. Li, and G. Sun, "Adhesively bonded joints – A review on design, manufacturing, experiments, modeling and challenges," Composites Part B: Engineering, vol. 276, p. 111225, May 2024. doi: 10.1016/j.compositesb.2024.111225
  • [27] W.-S. Kim, I.-H. Yun, J.-J. Lee, and H.-T. Jung, "Evaluation of mechanical interlock effect on adhesion strength of polymer–metal interfaces using micro-patterned surface topography," International Journal of Adhesion and Adhesives, vol. 30, no. 6, pp. 408–417, Sep. 2010. doi: 10.1016/j.ijadhadh.2010.05.004
  • [28] A. Nemati Giv, M. R. Ayatollahi, S. H. Ghaffari, and L. F. M. da Silva, "Effect of reinforcements at different scales on mechanical properties of epoxy adhesives and adhesive joints: a review," The Journal of Adhesion, vol. 94, no. 13, pp. 1082–1121, Nov. 2018. doi: 10.1080/00218464.2018.1452736
  • [29] R. Moriche, M. Sánchez, A. Jiménez-Suárez, S. G. Prolongo, and A. Ureña, "Strain monitoring mechanisms of sensors based on the addition of graphene nanoplatelets into an epoxy matrix," Composites Science and Technology, vol. 123, pp. 65–70, Feb. 2016. doi: 10.1016/j.compscitech.2015.12.002

Grafen ve çok duvarlı karbon nanotüp (MWCNT) nanoparçacık katkılı poliüretan yapıştırıcı ile birleştirilmiş epoksi bazlı karbon fiber takviyeli kompozit plakaların tek taraflı bindirme bağlantılarının mekanik özellikleri

Year 2025, Issue: Erken Görünüm, 1 - 15

Abstract

Bu çalışmada, epoksi esaslı karbon fiber takviyeli kompozit (CFRP) plakaların tek taraflı bindirme bağlantılarda, ağırlıkça %0,05, %0,1 ve %0,15 grafen nanoplatelet (GNP) ve çok duvarlı karbon nanotüp (MWCNT) katkılı poliüretan yapıştırıcıların mekanik etkisi incelenmiştir. İlk olarak, farklı ağırlık oranlarında nanoparçacıklar poliüretan yapıştırıcıya eklenerek nanokompozit yapıştırıcı üretilmiştir. Daha sonra, bu yapıştırıcılar kullanılarak çekme testi numuneleri üretilmiş ve çekme testleri ASTM D 882 standardına uygun olarak gerçekleştirilmiştir. Elde edilen sonuçlara göre en iyi mekanik özellikleri gösteren katkı oranları belirlenmiş ve tek taraflı bindirme bağlantıları (SLJ) üretilmiştir. Ardından, SLJ'nin mekanik özellikleri sabit çekme yükleme oranı altında ASTM D1002-10 standardına uygun olarak test edilmiştir. Çekme test numuneleri arasında en yüksek çekme dayanımı, %52,67 artışla (14,58 MPa) 05GR15CNT numunesinde gözlemlenmiştir. Öte yandan, SLJ numuneleri arasında en yüksek kayma dayanımı, %14,80 artışla (15,51 MPa) 10GR10CNTSLJ numunesinde elde edilmiştir. Nanoparçacıkların dağılımı ve hasar yüzeylerinin morfolojisi, taramalı elektron mikroskobu (SEM) görüntüleri ile analiz edilmiştir.

Project Number

191319006

References

  • [1] ASTM D907, "Standard Terminology of Adhesives," American Society for Testing and Materials. 2011. doi: 10.1520/D0907-12A.2
  • [2] A. Y. Kanani, X. Hou, and J. Ye, "A novel dissimilar single-lap joint with interfacial stiffness improvement," Composite Structures, vol. 252, Nov. 2020. doi: 10.1016/J.COMPSTRUCT.2020.112741
  • [3] A. J. Kinloch, "Adhesion and Adhesives," Dordrecht: Springer Netherlands, 1987. doi: 10.1007/978-94-015-7764-9
  • [4] H. Dodiuk, I. Belinski, A. Dotan, and S. Kenig, "Polyurethane adhesives containing functionalized nanoclay," Journal of Adhesion Science and Technology, vol. 20, no. 12, pp. 1345–1355, 2006. doi: 10.1163/156856106778456573
  • [5] P. Galvez, J. Abenojar, and M. A. Martinez, "Durability of steel-CFRP structural adhesive joints with polyurethane adhesives," Composites Part B: Engineering, vol. 165, pp. 1–9, May 2019. doi: 10.1016/j.compositesb.2018.11.097
  • [6] N. Naat, Y. Boutar, S. Naïmi, S. Mezlini, and L. F. M. Da Silva, "Effect of surface texture on the mechanical performance of bonded joints: a review," The Journal of Adhesion, vol. 99, no. 2, pp. 166–258, Jan. 2023. doi: 10.1080/00218464.2021.2008370
  • [7] J. M. Wernik and S. A. Meguid, "On the mechanical characterization of carbon nanotube reinforced epoxy adhesives," Materials and Design, vol. 59, pp. 19–32, 2014. doi: 10.1016/j.matdes.2014.02.034
  • [8] C. Guo et al., "Mechanical and thermal properties of multiwalled carbon-nanotube-reinforced Al2O3 nanocomposites," Ceramics International, 2020. doi: 10.1016/j.ceramint.2020.04.039
  • [9] H. Ejaz, A. Mubashar, E. Uddin, Z. Ali, and N. Arif, "Effect of functionalised and non-functionalised GNPs addition on strength properties of high viscous epoxy adhesive and lap shear joints," Polymer Testing, vol. 113, p. 107680, 2022. doi: 10.1016/j.polymertesting.2022.107680
  • [10] M. De Volder, S. Tawfick, R. Baughman, and A. J. Hart, "Carbon Nanotubes: Present and Future Commercial Application," Science, vol. 339, pp. 535–539, 2013. doi: 10.1126/science.1222453
  • [11] G. Otorgust, H. Dodiuk, S. Kenig, and R. Tenne, "Important insights into polyurethane nanocomposite-adhesives; a comparative study between INT-WS2 and CNT," European Polymer Journal, vol. 89, pp. 281–300, Apr. 2017. doi: 10.1016/J.EURPOLYMJ.2017.02.027
  • [12] Ö. Özbek and M. Çakır, "MWCNT and Nano-silica Hybrids Effect on Mechanical and Fracture Characterization of Single Lap Joints of GFRP plates," International Journal of Adhesion and Adhesives , vol. 117, p. 103159, 2022. doi: 10.1016/j.ijadhadh.2022.103159
  • [13] Z. Jia and G. Yuan, "Numerical study on the mechanical behavior of a polyurethane adhesive under high strain rate," Composites Part B: Engineering, vol. 158, pp. 131–140, 2019. doi: 10.1016/j.compositesb.2018.08.110
  • [14] Z. Jia, J. Yu, Q. Liu, S. Yu, and Z. Wang, "Functionally graded adhesive joints with exceptional strength and toughness by graphene nanoplatelets reinforced epoxy adhesives," International Journal of Adhesion and Adhesives, vol. 125, p. 103402, Jul. 2023. doi: 10.1016/j.ijadhadh.2023.103402
  • [15] H. Ejaz, A. Mubashar, E. Uddin, Z. Ali, and N. Arif, "Influence of MWCNTs on Strength Properties of High Viscous Epoxy Adhesive and Fracture Behavior of Adhesively Bonded Joints," Theoretical and Applied Fracture Mechanics, vol. 120, p. 103412, 2022. doi: 10.1016/j.tafmec.2022.103412
  • [16] H. Ejaz, A. Mubashar, M. A. M, and S. Waqar, "Effect of GNP and MWCNT Addition on Lap Shear Strength of Adhesively Bonded Joints," in 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST), IEEE, Aug. 2022. pp. 116–121. doi: 10.1109/IBCAST54850.2022.9990107
  • [17] A. Hallal, A. Elmarakbi, A. Shaito, and H. El-Hage, "Overview of Composite Materials and their Automotive Applications," Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness, pp. 1–28, 2013. doi: 10.1002/9781118535288.CH1
  • [18] ASTM D638, "Standard Test Method for Tensile Properties of Plastic," Available: https://www.astm.org/d0638-10.html. [Accessed: Oct. 09, 2022].
  • [19] ASTM D1002-10, "Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal)," in ASTM Book of Standards, ASTM International, 2019. pp. 1–5. doi: 10.1520/D1002-10R19
  • [20] M. V. Cakir and D. Kinay, "MWCNT, nano‐silica, and nano‐clay additives effects on adhesion performance of dissimilar materials bonded joints," Polymer Composites, vol. 42, no. 11, pp. 5880–5892, Nov. 2021. doi: 10.1002/pc.26268
  • [21] X. Jia, B. Liu, L. Huang, D. Hui, and X. Yang, "Numerical analysis of synergistic reinforcing effect of silica nanoparticle–MWCNT hybrid on epoxy-based composites," Composites Part B: Engineering, vol. 54, pp. 133–137, Nov. 2013. doi: 10.1016/j.compositesb.2013.04.002
  • [22] M. S. Goyat, S. Suresh, S. Bahl, S. Halder, and P. K. Ghosh, "Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite," Materials Chemistry and Physics, vol. 166, pp. 144–152, 2015. doi: 10.1016/j.matchemphys.2015.09.038
  • [23] M. Rashad et al., "Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys," Journal of Magnesium and Alloys, vol. 1, no. 3, pp. 242–248, 2013. doi: 10.1016/j.jma.2013.09.004
  • [24] F. Ghadami, M. R. Dadfar, and M. Kazazi, "Hot-cured epoxy-nanoparticulate-filled nanocomposites: Fracture toughness behavior," Engineering Fracture Mechanics , vol. 162, pp. 193–200, 2016. doi: 10.1016/j.engfracmech.2016.05.016
  • [25] R. Rodríguez, B. Pérez, and S. Flórez, "Effect of different nanoparticles on mechanical properties and curing behavior of thermoset polyurethane adhesives," in Journal of Adhesion, Taylor and Francis Inc., 2014. pp. 848–859. doi: 10.1080/00218464.2014.893509
  • [26] Y. Wei, X. Jin, Q. Luo, Q. Li, and G. Sun, "Adhesively bonded joints – A review on design, manufacturing, experiments, modeling and challenges," Composites Part B: Engineering, vol. 276, p. 111225, May 2024. doi: 10.1016/j.compositesb.2024.111225
  • [27] W.-S. Kim, I.-H. Yun, J.-J. Lee, and H.-T. Jung, "Evaluation of mechanical interlock effect on adhesion strength of polymer–metal interfaces using micro-patterned surface topography," International Journal of Adhesion and Adhesives, vol. 30, no. 6, pp. 408–417, Sep. 2010. doi: 10.1016/j.ijadhadh.2010.05.004
  • [28] A. Nemati Giv, M. R. Ayatollahi, S. H. Ghaffari, and L. F. M. da Silva, "Effect of reinforcements at different scales on mechanical properties of epoxy adhesives and adhesive joints: a review," The Journal of Adhesion, vol. 94, no. 13, pp. 1082–1121, Nov. 2018. doi: 10.1080/00218464.2018.1452736
  • [29] R. Moriche, M. Sánchez, A. Jiménez-Suárez, S. G. Prolongo, and A. Ureña, "Strain monitoring mechanisms of sensors based on the addition of graphene nanoplatelets into an epoxy matrix," Composites Science and Technology, vol. 123, pp. 65–70, Feb. 2016. doi: 10.1016/j.compscitech.2015.12.002
There are 29 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Mehmet Tongur 0000-0002-5847-3295

Necati Ataberk 0000-0002-5394-9549

Project Number 191319006
Early Pub Date April 14, 2025
Publication Date
Submission Date October 30, 2024
Acceptance Date February 10, 2025
Published in Issue Year 2025 Issue: Erken Görünüm

Cite

IEEE M. Tongur and N. Ataberk, “Mechanical Properties of SLJs with Graphene and MWCNT Nanoparticle-Doped Hybrid Polyurethane Adhesives on Epoxy-Based Carbon Fiber Reinforced Composite Plates”, GJES, no. Erken Görünüm, pp. 1–15, April 2025.

GJES is indexed and archived by:

3311333114331153311633117

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg