Research Article
BibTex RIS Cite

Methodology for Creating a New Bio-Inspired Bone Model

Year 2024, Volume: 10 Issue: 2, 225 - 237, 31.08.2024

Abstract

Bioinspiration is an approach that involves applying the information obtained by examining the structures, systems and processes found in nature to technology and design. This method aims to produce sustainable and innovative solutions to man-made problems by using solutions from nature's millions of years of evolution. Numerous design tools have been developed for use in the bio-inspired design process. However, there are not enough design tools for integrating the biological solution into the design. This study introduces a CAD module named Bone Structure, intended for designers who wish to reduce material and mass in their designs by drawing inspiration from the porous structure of trabecular bone. Utilizing lattice structures to replicate bone structure, this module, and its unique modeling method for creating lattice structures, lay the groundwork for future studies in this field. The consistency of geometric properties of example pieces with the characteristics of biological solutions is promising for this module.

References

  • [1] Y. Bar-Cohen, Biomimetics: nature-based innovation. CRC press, 2016.
  • [2] S. Jalali, M. Aliabadi, and M. Mahdavinejad, “Learning from plants: a new framework to approach water-harvesting design concepts,” International Journal of Building Pathology and Adaptation, vol. 40, no. 3, pp. 405–421, May 2022. doi:10.1108/IJBPA-01-2021-0007
  • [3] D. A. Coelho and C. A. M. Versos, “A comparative analysis of six bionic design methods,” Int. J. Design Engineering, vol. 4, no. 2, pp. 114–131, 2011. doi:10.1504/IJDE.2011.045131
  • [4] J. F. V Vincent, “Stealing Ideas from Nature,” in Deployable structures, Springer, 2001, pp. 51–58.
  • [5] K. Wanieck, P. E. Fayemi, N. Maranzana, C. Zollfrank, and S. Jacobs, “Biomimetics and its tools,” Bioinspired, Biomimetic and Nanobiomaterials, vol. 6, no. 2, pp. 53–66, Aug. 2016. doi:10.1680/jbibn.16.00010
  • [6] J. K. S. Nagel, L. Schmidt, and W. Born, “Fostering Diverse Analogical Transfer in Bio-Inspired Design,” in ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, Massachusetts, USA, 2015. doi:10.1115/DETC2015-47922
  • [7] C. A. M. Versos and D. A. Coelho, “Biologically Inspired Design: Methods and Validation,” in Industrial Design – New Frontiers, D. Coelho, Ed., InTech, 2017, pp. 101–120. doi:10.5772/20326
  • [8] N. Tan et al., “A system-of-systems bio-inspired design process: Conceptual design and physical prototype of a reconfigurable robot capable of multi-modal locomotion,” Front Neurorobot, vol. 13, 2019. doi:10.3389/fnbot.2019.00078
  • [9] W. K. Junior and A. S. Guanabara, “Methodology for product design based on the study of bionics,” Mater Des, vol. 26, no. 2, pp. 149–155, Apr. 2005. doi:10.1016/J.MATDES.2004.05.009
  • [10] J. F. V. Vincent, O. A. Bogatyreva, N. R. Bogatyrev, A. Bowyer, and A. K. Pahl, “Biomimetics: Its practice and theory,” Journal of the Royal Society Interface, vol. 3, no. 9. Royal Society, pp. 471–482, Aug. 22, 2006. doi:10.1098/rsif.2006.0127
  • [11] D. Baumeister, “Biomimicry resource handbook, life’s principles, and biomimicry spirals,” Missoula MT, USA: Biomimicry Group Inc, 2012.
  • [12] M. Helms, S. S. Vattam, and A. K. Goel, “Biologically inspired design: process and products,” Des Stud, vol. 30, no. 5, pp. 606–622, Sep. 2009. doi:10.1016/j.destud.2009.04.003
  • [13] B. Yang and W. Yan, “Methods of obtaining, verifying, and reusing optimal biological solutions,” Cogent Eng, vol. 4, no. 1, Jan. 2017. doi:.10.1080/23311916.2017.1306951
  • [14] C. F. Salgueiredo, “Modeling biological inspiration for innovative design,” in i3 conference, 2013.
  • [15] J. Y. Huang and S. T. Siao, “Development of an integrated bionic design system,” Journal of Engineering, Design and Technology, vol. 14, no. 2, pp. 310–327, 2016. doi:10.1108/JEDT-08-2014-0057
  • [16] G. Cao, Y. Sun, R. Tan, J. Zhang, and W. Liu, “A function-oriented biologically analogical approach for constructing the design concept of smart product in Industry 4.0,” Advanced Engineering Informatics, vol. 49, Aug. 2021. doi:10.1016/j.aei.2021.101352
  • [17] P.-E. Fayemi, N. Maranzana, A. Aoussat, and G. Bersano, “Bio-inspired design characterisation and its links with problem solving tools,” in DS 77: Proceedings of the DESIGN 2014 13th International Design Conference, Dubrovnik - Croatia, 2014, pp. 173–182.
  • [18] A. K. Goel, S. Vattam, B. Wiltgen, and M. Helms, “Information-Processing Theories of Biologically Inspired Design,” in Biologically Inspired Design, Springer London, 2014, pp. 127–152. doi:10.1007/978-1-4471-5248-4_6
  • [19] T. A. Lenau, A.-L. Metze, and T. Hesselberg, “Paradigms for biologically inspired design,” SPIE-Intl Soc Optical Eng, Mar. 2018, p. 1. doi:10.1117/12.2296560
  • [20] F. P. Appio, S. Achiche, A. Martini, and C. Beaudry, “On designers’ use of biomimicry tools during the new product development process: an empirical investigation,” Technol Anal Strateg Manag, vol. 29, no. 7, pp. 775–789, 2017. doi:10.1080/09537325.2016.1236190
  • [21] G. Cascini and D. Russo, “Computer-Aided analysis of patents and search for TRIZ contradictions,” Int. J. Product Development, vol. 4, no. 1–2, pp. 52–67, 2006. doi:10.1504/IJPD.2007.011533
  • [22] Q. Zhu, X. Zhang, and J. Luo, “Biologically inspired design concept generation using generative pre-trained transformers,” Journal of Mechanical Design, vol. 4, no. 145, pp. 1–46, 2023. doi:10.1115/1.4056598
  • [23] L. Siddharth and A. Chakrabarti, “Evaluating the impact of Idea-Inspire 4.0 on analogical transfer of concepts,” Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, vol. 32, no. 4, pp. 431–448, Nov. 2018. doi:10.1017/S0890060418000136
  • [24] A. Chakrabarti, P. Sarkar, B. Leelavathamma, and B. S. Nataraju, “A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas,” Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, vol. 19, no. 2, pp. 113–132, Apr. 2006. doi:10.1017/S0890060405050109
  • [25] S. S. Vattam and A. K. Goel, “Foraging for Inspiration: Understanding and Supporting the Online Information Seeking Practices of Biologically Inspired Designers,” in Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Washington, DC: ASME, Aug. 2011.
  • [26] F. Rosa, G. Cascini, and A. Baldussu, “UNO-BID: Unified Ontology for Causal-Function Modeling in Biologically Inspired Design,” International Journal of Design Creativity and Innovation, vol. 3, no. 3–4, pp. 177–210, 2015. doi:10.1080/21650349.2014.941941
  • [27] B. Lucero, C. J. Turner, and J. Linsey, “Design repository & analogy computation via unit language analysis (DRACULA) repository development,” in ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers (ASME), 2015. doi:10.1115/DETC2015-46640
  • [28] E. Spiliopoulou, S. Rugaber, A. Goel, L. Chen, B. Wiltgen, and A. K. Jagannathan, “Intelligent search for biologically inspired design,” in International Conference on Intelligent User Interfaces, Proceedings IUI, Association for Computing Machinery, Mar. 2015, pp. 77–80. doi:10.1145/2732158.2732182
  • [29] P. A. Verhaegen, J. D’Hondt, D. Vandevenne, S. Dewulf, and J. R. Duflou, “Identifying candidates for design-by-analogy,” Comput Ind, vol. 62, no. 4, pp. 446–459, May 2011. doi:10.1016/J.COMPIND.2010.12.007
  • [30] A. K. Goel, G. Zhang, B. Wiltgen, Y. Zhang, S. Vattam, and J. Yen, “On the benefits of digital libraries of case studies of analogical design: Documentation, access, analysis, and learning,” Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, vol. 29, no. 2, pp. 215–227, Apr. 2015. doi:10.1017/S0890060415000086
  • [31] L. Chen et al., “A Knowledge-Based Ideation Approach for Bio-inspired Design,” Proceedings of the Design Society, vol. 3, pp. 231–240, 2023. doi:10.1017/pds.2023.24
  • [32] The Biomimicry Institute, “AskNature.” [Online]. Available: https://asknature.org/ [Accessed: Sep. 07, 2023].
  • [33] M. K. Kaiser, H. Hashemi Farzaneh, and U. Lindemann, “BIOscrabble - Extraction of Biological Analogies Out of Large Text Sources,” in IC3K 2013-5th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, 2013, pp. 10–20.
  • [34] M. Z. Khan, J. Bhaskar, and A. Kumar, “Analysis of Lattice-Based Cranial Implant,” in International Conference on Recent Advances in Materials, Manufacturing and Thermal Engineering, A. Kumar, M. Zunaid, K. A. Subramanian, and H. Lim, Eds., Singapore: Springer, 2022, pp. 397–409. doi:10.1007/978-981-19-8517-1_30
  • [35] S. G. González, M. D. Vlad, J. L. López, and E. F. Aguado, “Novel bio-inspired 3D porous scaffold intended for bone-tissue engineering: Design and in silico characterisation of histomorphometric, mechanical and mass-transport properties,” Mater Des, vol. 225, Jan. 2023. doi:10.1016/j.matdes.2022.111467
  • [36] P. Terrier, M. Glaus, and E. Raufflet, “BiomiMETRIC assistance tool: A quantitative performance tool for biomimetic design,” Biomimetics, vol. 4, no. 3, Sep. 2019. doi:10.3390/biomimetics4030049
  • [37] C. H. Hung, A. Etoundi, A. Jafari, J. Matthews, W. C. Chang, and J. J. Chong, “Mimicking Condylar Knee to Design Bio-Inspired Robotic Knee Joint Based on Magnetic Resonance Imaging,” in 2021 24th International Conference on Mechatronics Technology, ICMT 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi:10.1109/ICMT53429.2021.9687202
  • [38] D. Costa, G. Palmieri, M. C. Palpacelli, D. Scaradozzi, and M. Callegari, “Design of a carangiform swimming robot through a multiphysics simulation environment,” Biomimetics, vol. 5, no. 4, pp. 1–18, Dec. 2020. doi:10.3390/biomimetics5040046
  • [39] Y. Seki, M. S. Schneider, and M. A. Meyers, “Structure and mechanical behavior of a toucan beak,” Acta Mater, vol. 53, no. 20, pp. 5281–5296, 2005. doi:10.1016/j.actamat.2005.04.048
  • [40] K. E. Crandell, R. O. Howe, and P. L. Falkingham, “Repeated evolution of drag reduction at the air–water interface in diving kingfishers,” J R Soc Interface, vol. 16, no. 154, May 2019. doi:10.1098/rsif.2019.0125
  • [41] A. Y. Akter and H. Basak, “Design and analysis of biomimetics based excavator bucket and tooth,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 236, no. 3, pp. 1166–1175, 2022. doi:10.1177/09544089211057645
  • [42] G. Raphel, M. M. Jacob, and S. Viswanathan, “Bioinspired designs for shock absorption, based upon nacre and Bouligand structures,” SN Appl Sci, vol. 1, no. 9, Sep. 2019. doi:10.1007/s42452-019-1062-7
  • [43] A. Ghazlan, T. Ngo, T. Nguyen, S. Linforth, and T. Van Le, “Uncovering a high-performance bio-mimetic cellular structure from trabecular bone,” Sci Rep, vol. 10, no. 1, p. 14247, 2020. doi:10.1038/s41598-020-70536-7
  • [44] N. Kladovasilakis, K. Tsongas, and D. Tzetzis, “Finite element analysis of orthopedic hip implant with functionally graded bioinspired lattice structures,” Biomimetics, vol. 5, no. 3, Sep. 2020. doi:10.3390/BIOMIMETICS5030044
  • [45] W. R. Hansen and K. Autumn, “Evidence for self-cleaning in gecko setae,” Proceedings of the National Academy of Sciences, vol. 102, no. 2, pp. 385–389, 2005. doi:10.1073/pnas.0408304102
  • [46] A. J. Schulte, D. M. Droste, K. Koch, and W. Barthlott, “Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials,” Beilstein Journal of Nanotechnology, vol. 2, no. 1, pp. 228–236, 2011. doi:10.3762/bjnano.2.27 [47] R. Helbig, J. Nickerl, C. Neinhuis, and C. Werner, “Smart skin patterns protect springtails,” PLoS One, vol. 6, no. 9, Sep. 2011. doi:10.1371/journal.pone.0025105
  • [48] W. Barthlott and C. Neinhuis, “Purity of the sacred lotus or escape from contamination in biological surfaces,” Planta, no. 202, pp. 1–8, 1997. doi:10.1007/s004250050096
  • [49] Z. Q. Liu, D. Jiao, Z. Y. Weng, and Z. F. Zhang, “Structure and mechanical behaviors of protective armored pangolin scales and effects of hydration and orientation,” J Mech Behav Biomed Mater, vol. 56, pp. 165–174, Mar. 2016. doi:10.1016/j.jmbbm.2015.11.013
  • [50] M. Miyazaki, Y. Hirai, H. Moriya, M. Shimomura, A. Miyauchi, and H. Liu, “Biomimetic Riblets Inspired by Sharkskin Denticles: Digitizing, Modeling and Flow Simulation,” J Bionic Eng, vol. 15, no. 6, pp. 999–1011, Nov. 2018. doi:10.1007/s42235-018-0088-7
  • [51] Z. Ji et al., “3D printing of bioinspired topographically oriented surfaces with frictional anisotropy for directional driving,” Tribol Int, vol. 132, pp. 99–107, Apr. 2019. doi:10.1016/j.triboint.2018.12.010
  • [52] Y. Zhang, H. Huang, J. X. Zhang, S. B. Zhang, and L. Q. Ren, “Friction and Wear Properties of the Tergum Surface of Mole Cricket, Gryllotalpa orientalis,” Applied Mechanics and Materials, vol. 461, pp. 707–711, 2014. doi:10.4028/www.scientific.net/AMM.461.707
  • [53] V. M. Mustahsan, A. Anugu, D. E. Komatsu, I. Kao, and S. Pentyala, “Biocompatible customized 3D bone scaffolds treated with CRFP, an osteogenic peptide,” Bioengineering, vol. 8, no. 12, Dec. 2021. doi:10.3390/bioengineering8120199
  • [54] P. S. Mehta, J. S. Ocampo, A. Tovar, and P. Chaudhari, “Bio-inspired design of lightweight and protective structures,” SAE Technical Paper, 2016. doi:10.4271/2016-01-0396
  • [55] M. Z. Khan, J. Bhaskar, and A. Kumar, “Design and analysis of strut-based lattice structure cranial implant,” Journal of Mechanical Engineering and Sciences, pp. 9307–9314, 2023. doi:10.15282/jmes.17.1.2023.1.0735
  • [56] L. Vaiani, A. E. Uva, and A. Boccaccio, “Structural and topological design of conformal bilayered scaffolds for bone tissue engineering,” Thin-Walled Structures, vol. 192, p. 111209, 2023. doi:10.1016/j.tws.2023.111209
  • [57] N. H. Hart, S. Nimphius, T. Rantalainen, A. Ireland, A. Siafarikas, and R. U. Newton, “Mechanical basis of bone strength: influence of bone material, bone structure and muscle action,” J Musculoskelet Neuronal Interact, vol. 17, no. 3, p. 114, 2017.
  • [58] S. Kanwar, O. Al-Ketan, and S. Vijayavenkataraman, “A novel method to design biomimetic, 3D printable stochastic scaffolds with controlled porosity for bone tissue engineering,” Mater Des, vol. 220, Aug. 2022. doi:10.1016/j.matdes.2022.110857
  • [59] M. Fantini, M. Curto, and F. De Crescenzio, “A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices,” Virtual Phys Prototyp, vol. 11, no. 2, pp. 77–90, Apr. 2016. doi:10.1080/17452759.2016.1172301
  • [60] X. Li et al., “The design and evaluation of bionic porous bone scaffolds in fluid flow characteristics and mechanical properties,” Comput Methods Programs Biomed, vol. 225, p. 107059, 2022. doi:10.1016/j.cmpb.2022.107059

Biyo Esinlenme Tabanlı Yeni Bir Kemik Modeli Oluşturma Metodolojisi

Year 2024, Volume: 10 Issue: 2, 225 - 237, 31.08.2024

Abstract

Biyo esinlenme yaklaşımı, doğada bulunan yapılar, sistemler ve süreçlerin incelenmesiyle elde edilen bilgilerin teknoloji ve tasarıma uygulanmasını içeren bir yaklaşımdır. Bu yöntem, doğanın milyonlarca yıllık evrim sürecinden gelen çözümleri kullanarak insan yapımı sorunlara sürdürülebilir ve yenilikçi çözümler üretmeyi amaçlar. Biyo esinlenme tasarım sürecinde kullanılmak üzere geliştirilmiş birçok tasarım aracı bulunmaktadır. Fakat biyolojik çözümün tasarıma entegre edilmesi aşaması için yeterli tasarım aracı bulunmamaktadır. Bu çalışmada, tasarımında malzeme ve kütle azaltmak için trabeküler kemiğin boşluklu yapısından esinlenmek isteyen tasarımcıların kullanabileceği Bone Structure isimli CAD modülü tanıtılmıştır. Kemik yapısını oluştururken kafes yapıları kullanan bu modül ve kafes yapısını oluştururken kullandığı özgün modelleme yöntemi bu alanda yapılacak gelecek çalışmaları için bir temel oluşturmakta ve örnek parçalara ait geometrik özelliklerin biyolojik çözümün özellikleri ile uyuşması bu modül için umut vadetmektedir.

References

  • [1] Y. Bar-Cohen, Biomimetics: nature-based innovation. CRC press, 2016.
  • [2] S. Jalali, M. Aliabadi, and M. Mahdavinejad, “Learning from plants: a new framework to approach water-harvesting design concepts,” International Journal of Building Pathology and Adaptation, vol. 40, no. 3, pp. 405–421, May 2022. doi:10.1108/IJBPA-01-2021-0007
  • [3] D. A. Coelho and C. A. M. Versos, “A comparative analysis of six bionic design methods,” Int. J. Design Engineering, vol. 4, no. 2, pp. 114–131, 2011. doi:10.1504/IJDE.2011.045131
  • [4] J. F. V Vincent, “Stealing Ideas from Nature,” in Deployable structures, Springer, 2001, pp. 51–58.
  • [5] K. Wanieck, P. E. Fayemi, N. Maranzana, C. Zollfrank, and S. Jacobs, “Biomimetics and its tools,” Bioinspired, Biomimetic and Nanobiomaterials, vol. 6, no. 2, pp. 53–66, Aug. 2016. doi:10.1680/jbibn.16.00010
  • [6] J. K. S. Nagel, L. Schmidt, and W. Born, “Fostering Diverse Analogical Transfer in Bio-Inspired Design,” in ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, Massachusetts, USA, 2015. doi:10.1115/DETC2015-47922
  • [7] C. A. M. Versos and D. A. Coelho, “Biologically Inspired Design: Methods and Validation,” in Industrial Design – New Frontiers, D. Coelho, Ed., InTech, 2017, pp. 101–120. doi:10.5772/20326
  • [8] N. Tan et al., “A system-of-systems bio-inspired design process: Conceptual design and physical prototype of a reconfigurable robot capable of multi-modal locomotion,” Front Neurorobot, vol. 13, 2019. doi:10.3389/fnbot.2019.00078
  • [9] W. K. Junior and A. S. Guanabara, “Methodology for product design based on the study of bionics,” Mater Des, vol. 26, no. 2, pp. 149–155, Apr. 2005. doi:10.1016/J.MATDES.2004.05.009
  • [10] J. F. V. Vincent, O. A. Bogatyreva, N. R. Bogatyrev, A. Bowyer, and A. K. Pahl, “Biomimetics: Its practice and theory,” Journal of the Royal Society Interface, vol. 3, no. 9. Royal Society, pp. 471–482, Aug. 22, 2006. doi:10.1098/rsif.2006.0127
  • [11] D. Baumeister, “Biomimicry resource handbook, life’s principles, and biomimicry spirals,” Missoula MT, USA: Biomimicry Group Inc, 2012.
  • [12] M. Helms, S. S. Vattam, and A. K. Goel, “Biologically inspired design: process and products,” Des Stud, vol. 30, no. 5, pp. 606–622, Sep. 2009. doi:10.1016/j.destud.2009.04.003
  • [13] B. Yang and W. Yan, “Methods of obtaining, verifying, and reusing optimal biological solutions,” Cogent Eng, vol. 4, no. 1, Jan. 2017. doi:.10.1080/23311916.2017.1306951
  • [14] C. F. Salgueiredo, “Modeling biological inspiration for innovative design,” in i3 conference, 2013.
  • [15] J. Y. Huang and S. T. Siao, “Development of an integrated bionic design system,” Journal of Engineering, Design and Technology, vol. 14, no. 2, pp. 310–327, 2016. doi:10.1108/JEDT-08-2014-0057
  • [16] G. Cao, Y. Sun, R. Tan, J. Zhang, and W. Liu, “A function-oriented biologically analogical approach for constructing the design concept of smart product in Industry 4.0,” Advanced Engineering Informatics, vol. 49, Aug. 2021. doi:10.1016/j.aei.2021.101352
  • [17] P.-E. Fayemi, N. Maranzana, A. Aoussat, and G. Bersano, “Bio-inspired design characterisation and its links with problem solving tools,” in DS 77: Proceedings of the DESIGN 2014 13th International Design Conference, Dubrovnik - Croatia, 2014, pp. 173–182.
  • [18] A. K. Goel, S. Vattam, B. Wiltgen, and M. Helms, “Information-Processing Theories of Biologically Inspired Design,” in Biologically Inspired Design, Springer London, 2014, pp. 127–152. doi:10.1007/978-1-4471-5248-4_6
  • [19] T. A. Lenau, A.-L. Metze, and T. Hesselberg, “Paradigms for biologically inspired design,” SPIE-Intl Soc Optical Eng, Mar. 2018, p. 1. doi:10.1117/12.2296560
  • [20] F. P. Appio, S. Achiche, A. Martini, and C. Beaudry, “On designers’ use of biomimicry tools during the new product development process: an empirical investigation,” Technol Anal Strateg Manag, vol. 29, no. 7, pp. 775–789, 2017. doi:10.1080/09537325.2016.1236190
  • [21] G. Cascini and D. Russo, “Computer-Aided analysis of patents and search for TRIZ contradictions,” Int. J. Product Development, vol. 4, no. 1–2, pp. 52–67, 2006. doi:10.1504/IJPD.2007.011533
  • [22] Q. Zhu, X. Zhang, and J. Luo, “Biologically inspired design concept generation using generative pre-trained transformers,” Journal of Mechanical Design, vol. 4, no. 145, pp. 1–46, 2023. doi:10.1115/1.4056598
  • [23] L. Siddharth and A. Chakrabarti, “Evaluating the impact of Idea-Inspire 4.0 on analogical transfer of concepts,” Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, vol. 32, no. 4, pp. 431–448, Nov. 2018. doi:10.1017/S0890060418000136
  • [24] A. Chakrabarti, P. Sarkar, B. Leelavathamma, and B. S. Nataraju, “A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas,” Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, vol. 19, no. 2, pp. 113–132, Apr. 2006. doi:10.1017/S0890060405050109
  • [25] S. S. Vattam and A. K. Goel, “Foraging for Inspiration: Understanding and Supporting the Online Information Seeking Practices of Biologically Inspired Designers,” in Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Washington, DC: ASME, Aug. 2011.
  • [26] F. Rosa, G. Cascini, and A. Baldussu, “UNO-BID: Unified Ontology for Causal-Function Modeling in Biologically Inspired Design,” International Journal of Design Creativity and Innovation, vol. 3, no. 3–4, pp. 177–210, 2015. doi:10.1080/21650349.2014.941941
  • [27] B. Lucero, C. J. Turner, and J. Linsey, “Design repository & analogy computation via unit language analysis (DRACULA) repository development,” in ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers (ASME), 2015. doi:10.1115/DETC2015-46640
  • [28] E. Spiliopoulou, S. Rugaber, A. Goel, L. Chen, B. Wiltgen, and A. K. Jagannathan, “Intelligent search for biologically inspired design,” in International Conference on Intelligent User Interfaces, Proceedings IUI, Association for Computing Machinery, Mar. 2015, pp. 77–80. doi:10.1145/2732158.2732182
  • [29] P. A. Verhaegen, J. D’Hondt, D. Vandevenne, S. Dewulf, and J. R. Duflou, “Identifying candidates for design-by-analogy,” Comput Ind, vol. 62, no. 4, pp. 446–459, May 2011. doi:10.1016/J.COMPIND.2010.12.007
  • [30] A. K. Goel, G. Zhang, B. Wiltgen, Y. Zhang, S. Vattam, and J. Yen, “On the benefits of digital libraries of case studies of analogical design: Documentation, access, analysis, and learning,” Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, vol. 29, no. 2, pp. 215–227, Apr. 2015. doi:10.1017/S0890060415000086
  • [31] L. Chen et al., “A Knowledge-Based Ideation Approach for Bio-inspired Design,” Proceedings of the Design Society, vol. 3, pp. 231–240, 2023. doi:10.1017/pds.2023.24
  • [32] The Biomimicry Institute, “AskNature.” [Online]. Available: https://asknature.org/ [Accessed: Sep. 07, 2023].
  • [33] M. K. Kaiser, H. Hashemi Farzaneh, and U. Lindemann, “BIOscrabble - Extraction of Biological Analogies Out of Large Text Sources,” in IC3K 2013-5th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, 2013, pp. 10–20.
  • [34] M. Z. Khan, J. Bhaskar, and A. Kumar, “Analysis of Lattice-Based Cranial Implant,” in International Conference on Recent Advances in Materials, Manufacturing and Thermal Engineering, A. Kumar, M. Zunaid, K. A. Subramanian, and H. Lim, Eds., Singapore: Springer, 2022, pp. 397–409. doi:10.1007/978-981-19-8517-1_30
  • [35] S. G. González, M. D. Vlad, J. L. López, and E. F. Aguado, “Novel bio-inspired 3D porous scaffold intended for bone-tissue engineering: Design and in silico characterisation of histomorphometric, mechanical and mass-transport properties,” Mater Des, vol. 225, Jan. 2023. doi:10.1016/j.matdes.2022.111467
  • [36] P. Terrier, M. Glaus, and E. Raufflet, “BiomiMETRIC assistance tool: A quantitative performance tool for biomimetic design,” Biomimetics, vol. 4, no. 3, Sep. 2019. doi:10.3390/biomimetics4030049
  • [37] C. H. Hung, A. Etoundi, A. Jafari, J. Matthews, W. C. Chang, and J. J. Chong, “Mimicking Condylar Knee to Design Bio-Inspired Robotic Knee Joint Based on Magnetic Resonance Imaging,” in 2021 24th International Conference on Mechatronics Technology, ICMT 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi:10.1109/ICMT53429.2021.9687202
  • [38] D. Costa, G. Palmieri, M. C. Palpacelli, D. Scaradozzi, and M. Callegari, “Design of a carangiform swimming robot through a multiphysics simulation environment,” Biomimetics, vol. 5, no. 4, pp. 1–18, Dec. 2020. doi:10.3390/biomimetics5040046
  • [39] Y. Seki, M. S. Schneider, and M. A. Meyers, “Structure and mechanical behavior of a toucan beak,” Acta Mater, vol. 53, no. 20, pp. 5281–5296, 2005. doi:10.1016/j.actamat.2005.04.048
  • [40] K. E. Crandell, R. O. Howe, and P. L. Falkingham, “Repeated evolution of drag reduction at the air–water interface in diving kingfishers,” J R Soc Interface, vol. 16, no. 154, May 2019. doi:10.1098/rsif.2019.0125
  • [41] A. Y. Akter and H. Basak, “Design and analysis of biomimetics based excavator bucket and tooth,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 236, no. 3, pp. 1166–1175, 2022. doi:10.1177/09544089211057645
  • [42] G. Raphel, M. M. Jacob, and S. Viswanathan, “Bioinspired designs for shock absorption, based upon nacre and Bouligand structures,” SN Appl Sci, vol. 1, no. 9, Sep. 2019. doi:10.1007/s42452-019-1062-7
  • [43] A. Ghazlan, T. Ngo, T. Nguyen, S. Linforth, and T. Van Le, “Uncovering a high-performance bio-mimetic cellular structure from trabecular bone,” Sci Rep, vol. 10, no. 1, p. 14247, 2020. doi:10.1038/s41598-020-70536-7
  • [44] N. Kladovasilakis, K. Tsongas, and D. Tzetzis, “Finite element analysis of orthopedic hip implant with functionally graded bioinspired lattice structures,” Biomimetics, vol. 5, no. 3, Sep. 2020. doi:10.3390/BIOMIMETICS5030044
  • [45] W. R. Hansen and K. Autumn, “Evidence for self-cleaning in gecko setae,” Proceedings of the National Academy of Sciences, vol. 102, no. 2, pp. 385–389, 2005. doi:10.1073/pnas.0408304102
  • [46] A. J. Schulte, D. M. Droste, K. Koch, and W. Barthlott, “Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials,” Beilstein Journal of Nanotechnology, vol. 2, no. 1, pp. 228–236, 2011. doi:10.3762/bjnano.2.27 [47] R. Helbig, J. Nickerl, C. Neinhuis, and C. Werner, “Smart skin patterns protect springtails,” PLoS One, vol. 6, no. 9, Sep. 2011. doi:10.1371/journal.pone.0025105
  • [48] W. Barthlott and C. Neinhuis, “Purity of the sacred lotus or escape from contamination in biological surfaces,” Planta, no. 202, pp. 1–8, 1997. doi:10.1007/s004250050096
  • [49] Z. Q. Liu, D. Jiao, Z. Y. Weng, and Z. F. Zhang, “Structure and mechanical behaviors of protective armored pangolin scales and effects of hydration and orientation,” J Mech Behav Biomed Mater, vol. 56, pp. 165–174, Mar. 2016. doi:10.1016/j.jmbbm.2015.11.013
  • [50] M. Miyazaki, Y. Hirai, H. Moriya, M. Shimomura, A. Miyauchi, and H. Liu, “Biomimetic Riblets Inspired by Sharkskin Denticles: Digitizing, Modeling and Flow Simulation,” J Bionic Eng, vol. 15, no. 6, pp. 999–1011, Nov. 2018. doi:10.1007/s42235-018-0088-7
  • [51] Z. Ji et al., “3D printing of bioinspired topographically oriented surfaces with frictional anisotropy for directional driving,” Tribol Int, vol. 132, pp. 99–107, Apr. 2019. doi:10.1016/j.triboint.2018.12.010
  • [52] Y. Zhang, H. Huang, J. X. Zhang, S. B. Zhang, and L. Q. Ren, “Friction and Wear Properties of the Tergum Surface of Mole Cricket, Gryllotalpa orientalis,” Applied Mechanics and Materials, vol. 461, pp. 707–711, 2014. doi:10.4028/www.scientific.net/AMM.461.707
  • [53] V. M. Mustahsan, A. Anugu, D. E. Komatsu, I. Kao, and S. Pentyala, “Biocompatible customized 3D bone scaffolds treated with CRFP, an osteogenic peptide,” Bioengineering, vol. 8, no. 12, Dec. 2021. doi:10.3390/bioengineering8120199
  • [54] P. S. Mehta, J. S. Ocampo, A. Tovar, and P. Chaudhari, “Bio-inspired design of lightweight and protective structures,” SAE Technical Paper, 2016. doi:10.4271/2016-01-0396
  • [55] M. Z. Khan, J. Bhaskar, and A. Kumar, “Design and analysis of strut-based lattice structure cranial implant,” Journal of Mechanical Engineering and Sciences, pp. 9307–9314, 2023. doi:10.15282/jmes.17.1.2023.1.0735
  • [56] L. Vaiani, A. E. Uva, and A. Boccaccio, “Structural and topological design of conformal bilayered scaffolds for bone tissue engineering,” Thin-Walled Structures, vol. 192, p. 111209, 2023. doi:10.1016/j.tws.2023.111209
  • [57] N. H. Hart, S. Nimphius, T. Rantalainen, A. Ireland, A. Siafarikas, and R. U. Newton, “Mechanical basis of bone strength: influence of bone material, bone structure and muscle action,” J Musculoskelet Neuronal Interact, vol. 17, no. 3, p. 114, 2017.
  • [58] S. Kanwar, O. Al-Ketan, and S. Vijayavenkataraman, “A novel method to design biomimetic, 3D printable stochastic scaffolds with controlled porosity for bone tissue engineering,” Mater Des, vol. 220, Aug. 2022. doi:10.1016/j.matdes.2022.110857
  • [59] M. Fantini, M. Curto, and F. De Crescenzio, “A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices,” Virtual Phys Prototyp, vol. 11, no. 2, pp. 77–90, Apr. 2016. doi:10.1080/17452759.2016.1172301
  • [60] X. Li et al., “The design and evaluation of bionic porous bone scaffolds in fluid flow characteristics and mechanical properties,” Comput Methods Programs Biomed, vol. 225, p. 107059, 2022. doi:10.1016/j.cmpb.2022.107059
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Alkın Yılmaz Akter 0000-0002-2693-1730

Hüdayim Başak 0000-0001-8066-5384

Early Pub Date June 4, 2024
Publication Date August 31, 2024
Submission Date April 16, 2024
Acceptance Date May 27, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

IEEE A. Y. Akter and H. Başak, “Biyo Esinlenme Tabanlı Yeni Bir Kemik Modeli Oluşturma Metodolojisi”, GJES, vol. 10, no. 2, pp. 225–237, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg