Research Article
BibTex RIS Cite

Fuzzy Backstepping Control of Industrial Liquid Level System

Year 2024, Volume: 10 Issue: 2, 355 - 367, 31.08.2024

Abstract

This paper presents a fuzzy backstepping controller design to improve the control performance of GUNT RT 512 industrial liquid level system. This system performs the process of reaching the liquid in the level tank to the level reference entered by the controller on it. The original control algorithm run on the ontroller is PID. In this study, the system is tested with a classical backstepping controller and fuzzy backstepping controller. The fuzzy logic controller determines one of the most important parameters of the backstepping controller. Constant and variable liquid levels are applied to the liquid level controller system. The system's dynamic responses are evaluated on response time, settling time, overshoot, and especially steady-state error. The parameter most in need of improvement is the steady-state error for the classical backstepping controller as this controller typically offers asymptotic tracking. Furthermore, the fuzzy backstepping proposes the exact tracking. The simulation results show that improvement has been achieved in almost all performance parameters with the proposed controller.

References

  • [1] M. F. Çakır,"Mechatronic system design and implementation for liquid level measurement," Gazi Journal of Engineering Sciences vol. 8, no.1, pp. 150-157, April 2022. doi:10.30855/gmbd.2022.01.14
  • [2] L. Chen, "Principle and simulation PID Controller of liquid level system," Journal of Physics: Conference Series, vol. 1757, no. 1, pp. 012187, January 2021. doi:10.1088/1742-6596/1757/1/012187
  • [3] X. Meng, H. Yu, H. Wu, and T. Xu, "Liquid Level control of four-tank system based on active disturbance rejection technology," Measurement, vol.175, pp. 109146, 2021. doi:10.1016/j.measurement.2021.109146
  • [4] J. Bhookya, M. V. Kumar, J. R. Kumar, and A. S. Rao, "Implementation of PID controller for liquid level system using mGWO and integration of IoT application," Journal of Industrial Information Integration, vol. 28, pp. 100368, 2022. doi: 10.1016/j.jii.2022.100368
  • [5] B. Ata, "Bir top ve çubuk sisteminin ayrıklaştırılmış geri adımlamalı kayan kipli kontrolü," Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 35, no. 3, pp. 659-668, 2020. doi:10.21605/cukurovaummfd.846402
  • [6] Z. J Yang and H. Sugiura, "Robust nonlinear control of a three-tank system using finite-time disturbance observers," Control Engineering Practice, vol. 84, pp. 63-71, 2019. doi:10.1016/j.conengprac.2018.11.013
  • [7] M. O. Gomaa, A. H. Hamouda, and A. A. E.-. Badawy, "Command-filtered Backstepping control of multitank system," in 7th International Conference on Control, Mechatronics and Automation (ICCMA), November 06-08, 2019. Delft, Netherlands, pp. 73-77. doi:10.1109/ICCMA46720.2019.8988698
  • [8] X. Meng, H. Yu, H. Wu, and T. Xu, "Disturbance observer-based integral backstepping control for a two-tank liquid level system subject to external disturbances,” Mathematical Problems in Engineering, vol. 2020, pp. 6801205, 2020. doi:10.1155/2020 /6801205
  • [9] X. Meng, H. Yu, J. Zhang, T. Xu, H. Wu, and K. Yan, "Disturbance observer-based feedback linearization control for a quadruple -tank liquid level system," ISA Transactions, vol. 122, pp. 146-162. 2022. doi:10.1016/j.isatra.2021.04.021
  • [10] T. Erguzel, "A hybrid PSO-PID Approach for trajectory tracking application of a liquid level control process," An International Journal of Optimization and Control: Theories & Applications, vol. 5, no. 2, pp. 63-73, 2015. doi:10.11121/ijocta.01.2015.0024
  • [11] Y. Ma and Y. Liang, "Design of adaptive fuzzy backstepping control algorithm for multi-joint series manipulator," in Proceedings of the 5th International Conference on Mechatronics and Robotics Engineering-ICMRE'19, February 16-19, 2019. Rome, Italy, pp. 161–166. doi:10.1145/3314493.3318457
  • [12] M. Ozarslan and O.F. Bay, "Fuzzy control of a grid connected three phase two stage photovoltaic system," in 2011 International Conference on Power Engineering, Energy and Electrical Drives, May 11-13, 2011, Malaga, Spain, pp. 1-6. doi:10.1109/PowerEng.2011.6036477.
  • [13] X. Shen, T. Xie, and T. Wang, "A Fuzzy Adaptative Backstepping Control Strategy for Marine Current Turbine under Disturbances and Uncertainties," Energies, vol. 13, no. 24, pp. 6550, 2020. doi:10.3390/en13246550
  • [14] Y. Tan, J. Chang, H. Tan, and J. Hu, "Integral backstepping control and experimental implementation for motion system," in Proceedings of the 2000. IEEE International Conference on Control Applications, Conference Proceedings, September 25-27,2000, Anchorage, USA, pp. 367-372. doi:10.1109/CCA.2000.897452

Endüstriyel Sıvı Seviye Sisteminin Bulanık Geri Adımlı Kontrolü

Year 2024, Volume: 10 Issue: 2, 355 - 367, 31.08.2024

Abstract

Bu makale, GUNT RT 512 endüstriyel sıvı seviye sisteminin denetim performansını iyileştirmek için, bir bulanık geri adımlamalı kontrolör tasarımı sunmaktadır. Bu sistem, seviye tankındaki sıvının, girilen seviye referansına ulaşması işlemini denetleyici ile gerçekleştirmektedir. Denetleyici üzerinde çalıştırılan orijinal denetim algoritması PID'dir. Bu çalışmada sistem klasik geri adımlamalı denetleyici ve bulanık geri adımlamalı denetleyici ile test edilmiştir. Bulanık mantık denetleyici, geri adımlamalı denetleyicinin en önemli parametrelerinden birini belirlemektedir. Sıvı seviye denetim sistemine sabit ve değişken sıvı seviyeleri uygulanmıştır. Sistemin dinamik tepkileri tepki süresi, yerleşme süresi, aşım ve özellikle kararlı durum hatası açısından değerlendirilmiştir. İyileştirmeye en çok ihtiyaç duyulan parametre, klasik geri adımlamalı denetleyici için kararlı durum hatasıdır. Çünkü bu denetleyici tipik olarak asimptotik izleme sunmaktadır. Tersine, bulanık geri adımlama tam izleme önermektedir. Simülasyon sonuçları, önerilen denetleyici ile neredeyse tüm performans parametrelerinde iyileşme sağlandığını göstermektedir.

References

  • [1] M. F. Çakır,"Mechatronic system design and implementation for liquid level measurement," Gazi Journal of Engineering Sciences vol. 8, no.1, pp. 150-157, April 2022. doi:10.30855/gmbd.2022.01.14
  • [2] L. Chen, "Principle and simulation PID Controller of liquid level system," Journal of Physics: Conference Series, vol. 1757, no. 1, pp. 012187, January 2021. doi:10.1088/1742-6596/1757/1/012187
  • [3] X. Meng, H. Yu, H. Wu, and T. Xu, "Liquid Level control of four-tank system based on active disturbance rejection technology," Measurement, vol.175, pp. 109146, 2021. doi:10.1016/j.measurement.2021.109146
  • [4] J. Bhookya, M. V. Kumar, J. R. Kumar, and A. S. Rao, "Implementation of PID controller for liquid level system using mGWO and integration of IoT application," Journal of Industrial Information Integration, vol. 28, pp. 100368, 2022. doi: 10.1016/j.jii.2022.100368
  • [5] B. Ata, "Bir top ve çubuk sisteminin ayrıklaştırılmış geri adımlamalı kayan kipli kontrolü," Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 35, no. 3, pp. 659-668, 2020. doi:10.21605/cukurovaummfd.846402
  • [6] Z. J Yang and H. Sugiura, "Robust nonlinear control of a three-tank system using finite-time disturbance observers," Control Engineering Practice, vol. 84, pp. 63-71, 2019. doi:10.1016/j.conengprac.2018.11.013
  • [7] M. O. Gomaa, A. H. Hamouda, and A. A. E.-. Badawy, "Command-filtered Backstepping control of multitank system," in 7th International Conference on Control, Mechatronics and Automation (ICCMA), November 06-08, 2019. Delft, Netherlands, pp. 73-77. doi:10.1109/ICCMA46720.2019.8988698
  • [8] X. Meng, H. Yu, H. Wu, and T. Xu, "Disturbance observer-based integral backstepping control for a two-tank liquid level system subject to external disturbances,” Mathematical Problems in Engineering, vol. 2020, pp. 6801205, 2020. doi:10.1155/2020 /6801205
  • [9] X. Meng, H. Yu, J. Zhang, T. Xu, H. Wu, and K. Yan, "Disturbance observer-based feedback linearization control for a quadruple -tank liquid level system," ISA Transactions, vol. 122, pp. 146-162. 2022. doi:10.1016/j.isatra.2021.04.021
  • [10] T. Erguzel, "A hybrid PSO-PID Approach for trajectory tracking application of a liquid level control process," An International Journal of Optimization and Control: Theories & Applications, vol. 5, no. 2, pp. 63-73, 2015. doi:10.11121/ijocta.01.2015.0024
  • [11] Y. Ma and Y. Liang, "Design of adaptive fuzzy backstepping control algorithm for multi-joint series manipulator," in Proceedings of the 5th International Conference on Mechatronics and Robotics Engineering-ICMRE'19, February 16-19, 2019. Rome, Italy, pp. 161–166. doi:10.1145/3314493.3318457
  • [12] M. Ozarslan and O.F. Bay, "Fuzzy control of a grid connected three phase two stage photovoltaic system," in 2011 International Conference on Power Engineering, Energy and Electrical Drives, May 11-13, 2011, Malaga, Spain, pp. 1-6. doi:10.1109/PowerEng.2011.6036477.
  • [13] X. Shen, T. Xie, and T. Wang, "A Fuzzy Adaptative Backstepping Control Strategy for Marine Current Turbine under Disturbances and Uncertainties," Energies, vol. 13, no. 24, pp. 6550, 2020. doi:10.3390/en13246550
  • [14] Y. Tan, J. Chang, H. Tan, and J. Hu, "Integral backstepping control and experimental implementation for motion system," in Proceedings of the 2000. IEEE International Conference on Control Applications, Conference Proceedings, September 25-27,2000, Anchorage, USA, pp. 367-372. doi:10.1109/CCA.2000.897452
There are 14 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Research Articles
Authors

Nursel Şahin 0000-0002-4328-4221

Meral Özarslan Yatak 0000-0002-1091-1647

Early Pub Date August 12, 2024
Publication Date August 31, 2024
Submission Date May 9, 2024
Acceptance Date July 7, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

IEEE N. Şahin and M. Özarslan Yatak, “Fuzzy Backstepping Control of Industrial Liquid Level System”, GJES, vol. 10, no. 2, pp. 355–367, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg