Research Article
BibTex RIS Cite

Çay Fabrikası Atıklarınının Peletlenmesi ve Pelet Fiziksel Özelliklerinin Belirlenmesi

Year 2016, Volume: 33 Issue: Ek Sayı, 70 - 80, 31.08.2016

Abstract

Çalışmada, çay fabrikası artıkları katı yakıt olarak kullanılmak üzere peletlenmiştir. Öğütülmüş çay atıkları, %12.68 nem içeriğinde ve 0.62 mm geometrik ortalama çapında ve laboratuvar ölçekli 3 kW güçlü pelet makinesinde çevre şartlarında peletlenmiştir. Peletlerin kalitesi ile ilgili fiziksel özellikleri olarak hacim yoğunluğu, parça yoğunluğu, mekanik dayanıklılık direnci, darbe dayanım direnci, basınç direnci ve nem alma durumu belirlenmiştir. Ayrıca çalışmada, pelet makinesinin kapasitesi ölçülmüştür. Fiziksel testler öncesinde peletler 7 gün süre ile 24 C sıcaklık ve %55 bağıl nem şartlarında bekletilmiştir. Çalışma sonunda, ortalama 6.1 mm çapında, 23.5 mm uzunluğunda ve kütlesi 0.8 g peletler elde edilmiştir. Çay peletlerinin hacim ve parça yoğunluğu 601 kg m 3 ve 1158 kg m-3, mekanik dayanıklılık direnci %81 ve basınç direnci 476 N bulunmuştur. Peletlerin nem alma direnci ortam sıcaklığı ve nemine bağlı olarak değişmiştir. Peletler düşük sıcaklık ve bağıl nem koşullarında nem kaybetmiştir. Çay peletlerinin fiziksel testler sonucu sağlam yapıda olduğu görülmüştür. Pelet makinesinin kapasitesi 46 kg h-1 olarak bulunmuştur.

References

  • Ahn BJ, Chang H, Lee SM, Choi DH, Cho ST, Han G and Yang I (2014). Effect of binders on the durability of wood pellets fabricated from larix kaemferi C. and liriodendron tulipifera L. sawdust. Renewable Energy, 62: 18-23.
  • Altun L (1998). Çay Fabrikası Lifsel Artıklarının Orman Fidanlıklarında Kompostlaştınlması ve Bitkiler İçin Öneminin Araştırılması. KTÜ. Fen Bilimleri Enstitüsü, Yayınlanmamış Yüksek Lisans Tezi, Trabzon.
  • Aşık BB ve Kütük C (2012). Çay atığı kompostunun çim alanların oluşturulmasında kullanım olanağı. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 26(2): 47-57.
  • Balasubramanian D (2000). Physical properties of raw cashew nut. Journal of Agricultural Engineering Reserach, 78: 291-297.
  • Bergström D, Israelsonn S, Öhman M, Dahlqvist S, Gref R, Boman C and Wasterlund I (2008). Effects of raw material particle size distribution on the characteristics of scots pine sawdust fuel pellets. Fuel Processing Technology, 89: 1324-1329.
  • Bilgin S, Yılmaz H, Koçer A, Acar M ve Dok M (2015). Fındık zurufunun peletlenmesi ve pelet fiziksel özelliklerinin belirlenmesi. Tarım Makinaları Bilim Dergisi, 11: 265-273.
  • Biswas AK, Rudolfsson M, Broström M and Umeki K (2014). Effect of pelletizing conditions on combustion behavior of single wood pellet. Applied Energy, 119: 79-84.
  • Celma AR, Cuadros F and Rodriguez FL (2012). Characterization of pellets from industrial tomato residues. Food and Bioproducts Processing, 90: 700-706.
  • Colley ZJ (2006). Compaction of Switchgrass for Value Added Utilization. M. Sc. Thesis, The Gtaduate Faculty of Auburn University.
  • Dok M (2014). Karadeniz Bölgesinin tarımsal atık potansiyeli ve bunlardan pelet yakıt olarak yararlanılması. Enerji Tarımı ve Biyoyakıtlar 4. Ulusal Çalıştayı,28-29 Mayıs 2014, s. 211-222, Samsun.
  • EN 14961-2 (2013). Solid Biofuels - Fuel Specification and Classes – Part 2: Wood Pellets for Non-Industrial Use.
  • EN 14961-6 (2010). Non-Woody Pellets for Non-Industrial Use.
  • EN 15103 (2009). Solid Biofuels. Determination of Bulk Density.
  • EN 15210-1 (2009). Solid Biofuels. Determination of Mechanical Durability of Pellets and Briquettes – Part 1: Pellets.
  • EN 16127 (2012). Solid Biofuels. Determination of Length and Diameter of Pellets.
  • Fasina OO (2008). Physical properties of peanut hull pellets. Bioresource Technology, 99: 1259-1266.
  • Franke M and Rey A (2006). Pelleting quality. World Grain, 78-79.
  • Garcia-Maraver A, Ramos-Ridao AF, Ruiz DP and Zamorano M (2010). Quality of Pellets from Olive Grove Residual Biomass. International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada-Spain.
  • Grover PD and Mishra SK (1996). Biomass briquetting: Technology and practices. Food and Agriculture Organization of the United Nations, Bangkok.
  • Holm JK, Henriksen UB, Hustad JE and Sorensen LH (2006). Toward an understanding of controlling parameters in softwood and hardwood pellet production. Energy and Fuel, 20: 2686-2694.
  • Kaliyan N and Morey RV (2009). Factor affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33: 337-359.
  • Kashaninejad M and Tabil LG (2011). Effect of microwave-chemical pre-treatment on compression characteristics of biomass grinds. Biosystem Engineering, 108(1): 36-45.
  • Lehtikangas P (2001). Quality properties of pelletised sawdust, logging residues and bark. Biomass and Bioenergy, 20: 351-360.
  • Lestander TA, Finell M, Samuelsson R, Arshadi M and Thyrel M (2012). Industrial scale biofuel pellet production from blends of unbarked softwood and hardwood stems-the effects of raw material composition and moisture content on pellet quality. Fuel Processing Technology, 95: 73-77.
  • Mani S, Tabil LG and Sokhansanj S (2003). An Overview of compaction of biomass grinds. Powder Handling and Process, 15: 160-168.
  • Mani S, Tabil LG and Sokhansanj S (2006). Effects of compressive force, particle size and moisture content on mechanical of biomass pellets from grasses. Biomass and Bioenergy, 30: 648-654.
  • Miranda MT, Arranz JI, Roman S, Rojas S, Montero I, Lopez M and Cruz JA (2011). Characterization of grape pomace and pyrenean oak pellets. Fuel Processing Technology, 92: 278-283.
  • Miranda MT, Arranz JI, Montero I, Roman S, Rojas CV and Nogales S (2012). Characterization and combustion of olive pomace and forest residue pellets. Fuel Processing Technology, 103: 91-96.
  • Nilsson D, Bernesson S and Hansson PA (2011). Pellet production from agricultural raw materials – a systems study. Biomass and Bioenergy, 35: 679-689.
  • Öksüz M ve Demirci M (1984). Türkiye’de çay artıklarından kafein üretimi. Journal of the Faculty of Agriculture, 15(1-2): 103-110.
  • Razuan R, Finney KN, Chen Q, Sharifi VN and Swithenbank J (2011). Pelletised fuel production from palm kernel cake. Fuel Processing Technology, 92(3): 609-615.
  • Serrano C, Monedero E, Lapuerta M and Portero H (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 92: 699-706.
  • Sokhansanj J and Turhollow AF (2004). Biomass densification-cubing operations and cost for corn stover. Applied Engineering in Agriculture, 20: 495-499.
  • Stahl M and Berghel J (2011). Energy efficient pilot-scale production of wood fuel pellets made from a raw material mix including sawdust and rapeseed cake. Biomass and Bioenergy, 35: 4849-4854.
  • Stelte W, Holm JK, Sanadi AR, Barsberg S, Ahrenfeldt J and Henriksen UB (2011). Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions. Fuel, 90: 3285-3290.
  • Tabil LG and Sokhansanj S (1996). Process conditions affecting the physical quality of alfalfa pellets. Applied Engineering in Agriculture, 12: 345-350.
  • Tabil LG and Sokhansanj S (1997). Bulk properties of alfalfa grind in relation to its compaction characteristics. Applied Engineering in Agriculture, 13: 499-505.
  • Theerarattananoon K, Xu F, Wilson J, Ballard R, McKinney L, Staggenborg S, Vadlanı P, Pei ZJ and Wang D (2011). Physical properties of pellets made from sorghum stalk, corn stover, wheat straw and big bluestem. Industrial Crops and Products, 33(2): 325-332.
  • TUİK (2016). Bitkisel Üretim İstatistikleri, Tarım ve Orman Alanları. Türkiye İstatistik Kurumu. http://www.tuik.gov.tr (Erişim 23.05.2016).
  • Tumuluru JS, Wright CT, Hess JR and Kenney KL (2011). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining, 5: 683-707.
  • Turner R (1995). Bottomline in feed processing: achieving optimum pellet quality. Feed Mgmt, 46: 30-33.
  • Werther J, Saenger M, Hartge EU, Ogada T and Siagi Z (2000). Combustion of agricultural residues. Progress in Energy and Combustion Science, 26: 1-27.
  • Yalınkılıç MK, Altun L ve Kalay Z (1996). Çay fabrikaları çay yaprağı artıklarının kompostlaştırılarak orman fidanlıklarında organik gübre olarak kullanılması. Ekoloji Dergisi, 18:28-32.
Year 2016, Volume: 33 Issue: Ek Sayı, 70 - 80, 31.08.2016

Abstract

References

  • Ahn BJ, Chang H, Lee SM, Choi DH, Cho ST, Han G and Yang I (2014). Effect of binders on the durability of wood pellets fabricated from larix kaemferi C. and liriodendron tulipifera L. sawdust. Renewable Energy, 62: 18-23.
  • Altun L (1998). Çay Fabrikası Lifsel Artıklarının Orman Fidanlıklarında Kompostlaştınlması ve Bitkiler İçin Öneminin Araştırılması. KTÜ. Fen Bilimleri Enstitüsü, Yayınlanmamış Yüksek Lisans Tezi, Trabzon.
  • Aşık BB ve Kütük C (2012). Çay atığı kompostunun çim alanların oluşturulmasında kullanım olanağı. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 26(2): 47-57.
  • Balasubramanian D (2000). Physical properties of raw cashew nut. Journal of Agricultural Engineering Reserach, 78: 291-297.
  • Bergström D, Israelsonn S, Öhman M, Dahlqvist S, Gref R, Boman C and Wasterlund I (2008). Effects of raw material particle size distribution on the characteristics of scots pine sawdust fuel pellets. Fuel Processing Technology, 89: 1324-1329.
  • Bilgin S, Yılmaz H, Koçer A, Acar M ve Dok M (2015). Fındık zurufunun peletlenmesi ve pelet fiziksel özelliklerinin belirlenmesi. Tarım Makinaları Bilim Dergisi, 11: 265-273.
  • Biswas AK, Rudolfsson M, Broström M and Umeki K (2014). Effect of pelletizing conditions on combustion behavior of single wood pellet. Applied Energy, 119: 79-84.
  • Celma AR, Cuadros F and Rodriguez FL (2012). Characterization of pellets from industrial tomato residues. Food and Bioproducts Processing, 90: 700-706.
  • Colley ZJ (2006). Compaction of Switchgrass for Value Added Utilization. M. Sc. Thesis, The Gtaduate Faculty of Auburn University.
  • Dok M (2014). Karadeniz Bölgesinin tarımsal atık potansiyeli ve bunlardan pelet yakıt olarak yararlanılması. Enerji Tarımı ve Biyoyakıtlar 4. Ulusal Çalıştayı,28-29 Mayıs 2014, s. 211-222, Samsun.
  • EN 14961-2 (2013). Solid Biofuels - Fuel Specification and Classes – Part 2: Wood Pellets for Non-Industrial Use.
  • EN 14961-6 (2010). Non-Woody Pellets for Non-Industrial Use.
  • EN 15103 (2009). Solid Biofuels. Determination of Bulk Density.
  • EN 15210-1 (2009). Solid Biofuels. Determination of Mechanical Durability of Pellets and Briquettes – Part 1: Pellets.
  • EN 16127 (2012). Solid Biofuels. Determination of Length and Diameter of Pellets.
  • Fasina OO (2008). Physical properties of peanut hull pellets. Bioresource Technology, 99: 1259-1266.
  • Franke M and Rey A (2006). Pelleting quality. World Grain, 78-79.
  • Garcia-Maraver A, Ramos-Ridao AF, Ruiz DP and Zamorano M (2010). Quality of Pellets from Olive Grove Residual Biomass. International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada-Spain.
  • Grover PD and Mishra SK (1996). Biomass briquetting: Technology and practices. Food and Agriculture Organization of the United Nations, Bangkok.
  • Holm JK, Henriksen UB, Hustad JE and Sorensen LH (2006). Toward an understanding of controlling parameters in softwood and hardwood pellet production. Energy and Fuel, 20: 2686-2694.
  • Kaliyan N and Morey RV (2009). Factor affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33: 337-359.
  • Kashaninejad M and Tabil LG (2011). Effect of microwave-chemical pre-treatment on compression characteristics of biomass grinds. Biosystem Engineering, 108(1): 36-45.
  • Lehtikangas P (2001). Quality properties of pelletised sawdust, logging residues and bark. Biomass and Bioenergy, 20: 351-360.
  • Lestander TA, Finell M, Samuelsson R, Arshadi M and Thyrel M (2012). Industrial scale biofuel pellet production from blends of unbarked softwood and hardwood stems-the effects of raw material composition and moisture content on pellet quality. Fuel Processing Technology, 95: 73-77.
  • Mani S, Tabil LG and Sokhansanj S (2003). An Overview of compaction of biomass grinds. Powder Handling and Process, 15: 160-168.
  • Mani S, Tabil LG and Sokhansanj S (2006). Effects of compressive force, particle size and moisture content on mechanical of biomass pellets from grasses. Biomass and Bioenergy, 30: 648-654.
  • Miranda MT, Arranz JI, Roman S, Rojas S, Montero I, Lopez M and Cruz JA (2011). Characterization of grape pomace and pyrenean oak pellets. Fuel Processing Technology, 92: 278-283.
  • Miranda MT, Arranz JI, Montero I, Roman S, Rojas CV and Nogales S (2012). Characterization and combustion of olive pomace and forest residue pellets. Fuel Processing Technology, 103: 91-96.
  • Nilsson D, Bernesson S and Hansson PA (2011). Pellet production from agricultural raw materials – a systems study. Biomass and Bioenergy, 35: 679-689.
  • Öksüz M ve Demirci M (1984). Türkiye’de çay artıklarından kafein üretimi. Journal of the Faculty of Agriculture, 15(1-2): 103-110.
  • Razuan R, Finney KN, Chen Q, Sharifi VN and Swithenbank J (2011). Pelletised fuel production from palm kernel cake. Fuel Processing Technology, 92(3): 609-615.
  • Serrano C, Monedero E, Lapuerta M and Portero H (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 92: 699-706.
  • Sokhansanj J and Turhollow AF (2004). Biomass densification-cubing operations and cost for corn stover. Applied Engineering in Agriculture, 20: 495-499.
  • Stahl M and Berghel J (2011). Energy efficient pilot-scale production of wood fuel pellets made from a raw material mix including sawdust and rapeseed cake. Biomass and Bioenergy, 35: 4849-4854.
  • Stelte W, Holm JK, Sanadi AR, Barsberg S, Ahrenfeldt J and Henriksen UB (2011). Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions. Fuel, 90: 3285-3290.
  • Tabil LG and Sokhansanj S (1996). Process conditions affecting the physical quality of alfalfa pellets. Applied Engineering in Agriculture, 12: 345-350.
  • Tabil LG and Sokhansanj S (1997). Bulk properties of alfalfa grind in relation to its compaction characteristics. Applied Engineering in Agriculture, 13: 499-505.
  • Theerarattananoon K, Xu F, Wilson J, Ballard R, McKinney L, Staggenborg S, Vadlanı P, Pei ZJ and Wang D (2011). Physical properties of pellets made from sorghum stalk, corn stover, wheat straw and big bluestem. Industrial Crops and Products, 33(2): 325-332.
  • TUİK (2016). Bitkisel Üretim İstatistikleri, Tarım ve Orman Alanları. Türkiye İstatistik Kurumu. http://www.tuik.gov.tr (Erişim 23.05.2016).
  • Tumuluru JS, Wright CT, Hess JR and Kenney KL (2011). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining, 5: 683-707.
  • Turner R (1995). Bottomline in feed processing: achieving optimum pellet quality. Feed Mgmt, 46: 30-33.
  • Werther J, Saenger M, Hartge EU, Ogada T and Siagi Z (2000). Combustion of agricultural residues. Progress in Energy and Combustion Science, 26: 1-27.
  • Yalınkılıç MK, Altun L ve Kalay Z (1996). Çay fabrikaları çay yaprağı artıklarının kompostlaştırılarak orman fidanlıklarında organik gübre olarak kullanılması. Ekoloji Dergisi, 18:28-32.
There are 43 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Sefai Bilgin This is me

Abdülkadir Koçer

Hasan Yılmaz This is me

Mustafa Acar This is me

Mahmut Dok This is me

Publication Date August 31, 2016
Published in Issue Year 2016 Volume: 33 Issue: Ek Sayı

Cite

APA Bilgin, S., Koçer, A., Yılmaz, H., Acar, M., et al. (2016). Çay Fabrikası Atıklarınının Peletlenmesi ve Pelet Fiziksel Özelliklerinin Belirlenmesi. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 33(Ek Sayı), 70-80.