Antiinflamatuvar Etkili Doğal Kaynaklı Bileşiklerin Potansiyel Antikanser Etkileri: Deneysel Kanıtların İncelenmesi
Year 2020,
Volume: 2 Issue: 1, 6 - 10, 31.03.2020
Asuman Deveci Özkan
,
Süleyman Kaleli
Abstract
Kanser insan ömrünü kısıtlayan ve yaşam tarzı, genetik çeşitlilik, virüs enfeksiyonu ve kronik inflamasyon gibi birçok faktöre ek olarak kontrolsüz büyüme ve hücrelerin kontrolsüz yayılması ile karakterize yaşa bağlı bir hastalıktır. Kanser gelişimi karmaşıktır ve bağışıklık sisteminde görevli hücrelerin tümör tanınması ve yok edilmesinde önemli görevleri vardır. Bu nedenle kanser tedavisi için potansiyel anti-inflamatuvar ajanlar olarak doğal kaynaklı bileşiklerin kullanıldığı yeni terapötik yaklaşımların araştırılması önem kazanmaktadır. Ancak doğal kaynaklı bu bileşiklerin immün sistem üzerindeki etkisi ve bu etkiyle birlikte gösterdiği antikanser mekanizmalar halen araştırılmaya devam etmektedir. Dolayısıyla çalışmamızın amacı, kansere karşı antiinflamatuvar etki sergileyen bazı doğal kaynaklı bileşiklerin (nobiletin, kurkumin, genistein ve EGCG) gösterdiği potansiyel antikanser ve/veya koruyucu etkileri ile ilgili deneysel kanıtları ortaya koymaktır. Böylelikle yapılan çalışmalar incelenerek bu doğal bileşikler ile ilgili gelecekte yapılacak hedefe yönelik terapi gibi daha ileri ve kapsamlı çalışmalar kanserde doğal bileşik uygulamasının (geleneksel tıp olarak) hem bilimsel temelini hem de mevcut kemoterapötik ilaçlarla klinik olarak kombinasyon halindeki etkisini keşfetmek için moleküler bir yaklaşım geliştirmemize olanak sağlayacaktır.
References
- 1. Walter ED. Genistin (an Isoflavone Glucoside) and its Aglucone, Genistein, from Soybeans. J. Am. Chem Soc. 1941;63:3273–76.
- 2. Akiyama T, Ishida J, Nakagawa S, et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987;262:5592-5.
- 3. Choi YH, Zhang L, Lee WH, et al. Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. Int J Oncol. 1998;13:391-6.
- 4. Brzezinski A,Debi, A. Phytoestrogens: The “natural” selective estrogen receptor modulators? Eur J Obstet Gynecol Reprod Biol. 1999;85:47–51.
- 5. Jiang Y, Gong P, Madak-Erdogan Z, et al. Mechanisms enforcing the estrogen receptor β selectivity of botanical estrogens. FASEB J. 2013;27:4406–4418.
- 6. Montgomery JS, Price DK, Figg WD. The androgen receptor gene and its influence on the development and progression of prostate cancer. J Pathol. 2001;195:138–146.
- 7. Pihlajamaa P, Zhang FP, Saarinen L, et al. The phytoestrogen genistein is a tissue-specific androgen receptor modulator. Endocrinology 2011;152:4395–4405.
- 8. Lazarevic B, Boezelijn G, Diep, LM,et al. Efficacy and safety of short-term genistein intervention in patients with localized prostate cancer prior to radical prostatectomy: A randomized, placebo-controlled, double-blind Phase 2 clinical trial. Nutr Cancer 2011;63: 889–898.
- 9. Noguchi S, Atsumi H, Iwao Y, et al. Nobiletin: a citrus flavonoid displaying potent physiological activity. Acta Crystallogr C Struct Chem. 2016;72:124-7.
- 10. Yoshigai E, Machida T, Okuyama T, et al. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes. Biochem Biophys Res Commun. 2013;439:54-9.
- 11. Lee YC, Cheng TH, Lee JS, et al. Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells. Mol Cell Biochem. 2011;347:103-15.
- 12. Tominari T, Hirata M, Matsumoto C, et al. Polymethoxy flavonoids, nobiletin and tangeretin, prevent lipopolysaccharide-induced inflammatory bone loss in an experimental model for periodontitis. J Pharmacol Sci. 2012;119:390-4.
- 13. Ma X, Jin S, Zhang Y, et al. Inhibitory effects of nobiletin on hepatocellular carcinoma in vitro and in vivo. Phytother Res. 2014;28:560-7.
- 14. Hsiao PC, Lee WJ, Yang SF, et al. Nobiletin suppresses the proliferation and induces apoptosis involving MAPKs and caspase-8/-9/-3 signals in human acute myeloid leukemia cells. Tumour Biol. 2014;35:11903-11.
- 15. Baek SH, Kim SM, Nam D, et al. Antimetastatic effect of nobiletin through the down-regulation of CXC chemokine receptor type 4 and matrix metallopeptidase-9. Pharm Biol. 2012;50:1210-8.
- 16. Chen C, Ono M, Takeshima M, et al. Antiproliferative and apoptosis-inducing activity of nobiletin against three subtypes of human breast cancer cell lines. Anticancer Res. 2014;34:1785-92.
- 17. Jin TR. Curcumin and dietary polyphenol research: beyond drug discovery. Acta Pharmacol Sin. 2018;39:779-786
- 18. Duvoix A, Morceau F, Schnekenburger M, et al. Curcumin-induced cell death in 2 leukemia cell lines: K562 and Jurkat. Ann N Y Acad Sci. 2003;1010:389-392.
- 19. Schnekenburger M, Diederich M. Nutritional epigenetic regulators in the field of cancer: new avenues for chemopreventive approaches. In: Gray SG, ed. Epigenetic Cancer Therapy. Cambridge, MA: Academic Press; 2015:393-425
- 20. Guney Eskiler G, Sahin E, Deveci Ozkan A, et al. Curcumin induces DNA damage by mediating homologous recombination mechanism in triple negative breast cancer. Nutr Cancer. 2019;1:1-10.
- 21. Teiten MH, Dicato M, Diederich M. Curcumin as a regulator of epigenetic events. Mol Nutr Food Res. 2013;57:1619-1629.
- 22. Barrero MJ. Epigenetic strategies to boost cancer immunotherapies [serial online]. Int J Mol Sci. 2017;18:E1108.
- 23. Mirzaei H, Masoudifar A, Sahebkar A, et al. MicroRNA: a novel target of curcumin in cancer therapy. J Cell Physiol. 2018;233:3004-3015.
- 24. Milano F, Mari L, van de Luijtgaarden W, et al. Nano-curcumin inhibits proliferation of esophageal adenocarcinoma cells and enhances the T cell mediated immune response [serial online]. Front Oncol. 2013;3:137.
- 25. Schnekenburger M, Dicato M, Diederich M. Plant-derived epigenetic modulators for cancer treatment and prevention. Biotechnol Adv. 2014;32:1123-1132.
- 26. Henning SM, Wang P, Carpenter CL, Heber D. Epigenetic effects of green tea polyphenols in cancer. Epigenomics. 2013;5:729-741.
- 27. Jiang GM, Xie WY, Wang HS, et al. Curcumin combined with FAPalphac vaccine elicits effective antitumor response by targeting indolamine-2,3-dioxygenase and inhibiting EMT induced by TNFalpha in melanoma. Oncotarget. 2015;6:25932-25942.
- 28. Nosrati N, Bakovic M, Paliyath G. Molecular mechanisms and pathways as targets for cancer prevention and progression with dietary compounds [serial online]. Int J Mol Sci. 2017;18:E2050.
- 29. Ogawa K, Hara T, Shimizu M, et al. (−)-Epigallocatechin gallate inhibits the expression of indoleamine 2,3-dioxygenase in human colorectal cancer cells. Oncol Lett. 2012;4:546-550.
- 30. Huang AC, Cheng HY, Lin TS, et al. Epigallocatechin gallate (EGCG), influences a murine WEHI-3 leukemia model in vivo through enhancing phagocytosis of macrophages and populations of T- and B-cells. In Vivo. 2013;27:627-634.
Year 2020,
Volume: 2 Issue: 1, 6 - 10, 31.03.2020
Asuman Deveci Özkan
,
Süleyman Kaleli
References
- 1. Walter ED. Genistin (an Isoflavone Glucoside) and its Aglucone, Genistein, from Soybeans. J. Am. Chem Soc. 1941;63:3273–76.
- 2. Akiyama T, Ishida J, Nakagawa S, et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987;262:5592-5.
- 3. Choi YH, Zhang L, Lee WH, et al. Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. Int J Oncol. 1998;13:391-6.
- 4. Brzezinski A,Debi, A. Phytoestrogens: The “natural” selective estrogen receptor modulators? Eur J Obstet Gynecol Reprod Biol. 1999;85:47–51.
- 5. Jiang Y, Gong P, Madak-Erdogan Z, et al. Mechanisms enforcing the estrogen receptor β selectivity of botanical estrogens. FASEB J. 2013;27:4406–4418.
- 6. Montgomery JS, Price DK, Figg WD. The androgen receptor gene and its influence on the development and progression of prostate cancer. J Pathol. 2001;195:138–146.
- 7. Pihlajamaa P, Zhang FP, Saarinen L, et al. The phytoestrogen genistein is a tissue-specific androgen receptor modulator. Endocrinology 2011;152:4395–4405.
- 8. Lazarevic B, Boezelijn G, Diep, LM,et al. Efficacy and safety of short-term genistein intervention in patients with localized prostate cancer prior to radical prostatectomy: A randomized, placebo-controlled, double-blind Phase 2 clinical trial. Nutr Cancer 2011;63: 889–898.
- 9. Noguchi S, Atsumi H, Iwao Y, et al. Nobiletin: a citrus flavonoid displaying potent physiological activity. Acta Crystallogr C Struct Chem. 2016;72:124-7.
- 10. Yoshigai E, Machida T, Okuyama T, et al. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes. Biochem Biophys Res Commun. 2013;439:54-9.
- 11. Lee YC, Cheng TH, Lee JS, et al. Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells. Mol Cell Biochem. 2011;347:103-15.
- 12. Tominari T, Hirata M, Matsumoto C, et al. Polymethoxy flavonoids, nobiletin and tangeretin, prevent lipopolysaccharide-induced inflammatory bone loss in an experimental model for periodontitis. J Pharmacol Sci. 2012;119:390-4.
- 13. Ma X, Jin S, Zhang Y, et al. Inhibitory effects of nobiletin on hepatocellular carcinoma in vitro and in vivo. Phytother Res. 2014;28:560-7.
- 14. Hsiao PC, Lee WJ, Yang SF, et al. Nobiletin suppresses the proliferation and induces apoptosis involving MAPKs and caspase-8/-9/-3 signals in human acute myeloid leukemia cells. Tumour Biol. 2014;35:11903-11.
- 15. Baek SH, Kim SM, Nam D, et al. Antimetastatic effect of nobiletin through the down-regulation of CXC chemokine receptor type 4 and matrix metallopeptidase-9. Pharm Biol. 2012;50:1210-8.
- 16. Chen C, Ono M, Takeshima M, et al. Antiproliferative and apoptosis-inducing activity of nobiletin against three subtypes of human breast cancer cell lines. Anticancer Res. 2014;34:1785-92.
- 17. Jin TR. Curcumin and dietary polyphenol research: beyond drug discovery. Acta Pharmacol Sin. 2018;39:779-786
- 18. Duvoix A, Morceau F, Schnekenburger M, et al. Curcumin-induced cell death in 2 leukemia cell lines: K562 and Jurkat. Ann N Y Acad Sci. 2003;1010:389-392.
- 19. Schnekenburger M, Diederich M. Nutritional epigenetic regulators in the field of cancer: new avenues for chemopreventive approaches. In: Gray SG, ed. Epigenetic Cancer Therapy. Cambridge, MA: Academic Press; 2015:393-425
- 20. Guney Eskiler G, Sahin E, Deveci Ozkan A, et al. Curcumin induces DNA damage by mediating homologous recombination mechanism in triple negative breast cancer. Nutr Cancer. 2019;1:1-10.
- 21. Teiten MH, Dicato M, Diederich M. Curcumin as a regulator of epigenetic events. Mol Nutr Food Res. 2013;57:1619-1629.
- 22. Barrero MJ. Epigenetic strategies to boost cancer immunotherapies [serial online]. Int J Mol Sci. 2017;18:E1108.
- 23. Mirzaei H, Masoudifar A, Sahebkar A, et al. MicroRNA: a novel target of curcumin in cancer therapy. J Cell Physiol. 2018;233:3004-3015.
- 24. Milano F, Mari L, van de Luijtgaarden W, et al. Nano-curcumin inhibits proliferation of esophageal adenocarcinoma cells and enhances the T cell mediated immune response [serial online]. Front Oncol. 2013;3:137.
- 25. Schnekenburger M, Dicato M, Diederich M. Plant-derived epigenetic modulators for cancer treatment and prevention. Biotechnol Adv. 2014;32:1123-1132.
- 26. Henning SM, Wang P, Carpenter CL, Heber D. Epigenetic effects of green tea polyphenols in cancer. Epigenomics. 2013;5:729-741.
- 27. Jiang GM, Xie WY, Wang HS, et al. Curcumin combined with FAPalphac vaccine elicits effective antitumor response by targeting indolamine-2,3-dioxygenase and inhibiting EMT induced by TNFalpha in melanoma. Oncotarget. 2015;6:25932-25942.
- 28. Nosrati N, Bakovic M, Paliyath G. Molecular mechanisms and pathways as targets for cancer prevention and progression with dietary compounds [serial online]. Int J Mol Sci. 2017;18:E2050.
- 29. Ogawa K, Hara T, Shimizu M, et al. (−)-Epigallocatechin gallate inhibits the expression of indoleamine 2,3-dioxygenase in human colorectal cancer cells. Oncol Lett. 2012;4:546-550.
- 30. Huang AC, Cheng HY, Lin TS, et al. Epigallocatechin gallate (EGCG), influences a murine WEHI-3 leukemia model in vivo through enhancing phagocytosis of macrophages and populations of T- and B-cells. In Vivo. 2013;27:627-634.