Research Article
BibTex RIS Cite

Süperiletken CoZr2 Bileşiğinin Termodinamik Özelliklerinin Teoriksel Olarak İncelenmesi

Year 2023, Volume: 4 Issue: 2, 101 - 108, 30.11.2023

Abstract

Tetragonal CuAl2 yapıda kristalleşen CoZr2 bileşiği Tc= 5.5- 6K geçiş sıcaklığına sahip olan süperiletken bir malzemedir. Kuşkusuz, malzemelerin yapı-özellik korelasyonlarının araştırılması, söz konusu malzeme ailesinin temel yönlerinin anlaşılmasına yardımcı olmaktadır. Sonuç olarak, süperiletkenlik mekanizmasını daha iyi anlamak için CoZr2 süperiletken malzmesinin yapısal, mekanik, elektronik, ve termodinamik yönlerini analiz etmek için ilk- prensip hesaplamaları yapılmıştır. İlk olarak hesapladığımız örgü parametresi daha önceki verilerle mükemmel uyum göstermektedir. Ayrıca, mekanik parametreler, bulk modülü, kayma modülü, Young modülü, Poisson oranı, anizotropi faktörü elde edilmiştir. Elde edilen sonuçlara göre anizotrop ve kırılgan bir malzemedir. Elektronik band yapısı CoZr2 nin metalik özelliğini göstermektedir. CoZr2 ile ilgili bazı makroskopik özellikleri üzerindeki termal etkiler yarı-harmonik Debye modeli kullanılarak 0-1000K ve 0-20 GPa hidrostatik basınç aralığında tahmin edilmiştir.
.

References

  • Castelvecchi D.(2020). First room-temperature superconductor excites and baffles scientists. Nature, 5867829.
  • Bardeen J., Cooper L.N., Schrieffer J.R. (1957). Theory of superconductivity. Phys. Rev., 108 (5), 1175–1204.
  • Chajewski G., Wi´sniewski P., Gnida D., Pikul A.P., Kaczorowski D. (2019). Crystal growth and physical properties of the YPd2Si2 superconductor. Cryst. Growth Des., 19(5), 2557–2563.
  • Van Delft D., Kes P. (2010). The discovery of superconductivity. Phys. Today. 63(9), 38–44.
  • Rahaman M.Z., Rahman M.A. (2017). ThCr2Si2-type Ru-based superconductors LaRu2M2 (M = P and As): An ab-initio investigation. J. Alloy. Compd., 695, 2827–2834.
  • Rahaman M.Z., Rahman M.A. (2017). Novel 122-type Ir-based superconductors BaIr2Mi2 (Mi = P and As): A density functional studyç J. Alloy. Compd., 711, 327–334.
  • Snider E., et al. (2020). Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586 (7829), 373–377,
  • Takenaka K. (2012). Negative thermal expansion materials: technological key for control of thermal expansion, Sci. Technol. Adv. Mater., 13, 013001.
  • Barrera G. D., Bruno J. A. O., Barron T. H. K, and Allan N. L. (2005). Negative thermal expansion. J. Phys.: Condens. Matter, 17, R217.
  • Chen J., Hu L., Deng J., and X. Xing. (2015). Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem. Soc. Rev., 44, 3522.
  • Mary T. A., Evans J. S. O., Vogt T., and Sleight A. W. (1996). Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science, 272, 90.
  • Takenaka K., Okamoto Y., Shinoda T., Katayama N., and Sakai Y. (2017). Colossal negative thermal expansion in reduced layered ruthenate. Nat. Commun., 8, 14102.
  • Mizuguchi Y., Kasem Md. R., and Matsuda T. D. (2021). Superconductivity in CuAl2-type Co0.2 Ni0.1Cu0.1 Rh0.3 Ir0.3Zr2 with a high-entropy-alloy transition metal site. Mater. Res. Lett., 9, 141.
  • Kresse G., Hafner J. (1993). Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47, 558 .
  • Kresse G., Furthmüller J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci., 6, 15.
  • Kresse G., Furthmüller J. (1996)ç Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 5, 11-169.
  • Kresse G., Hafner J.(1994). Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J.Phys.:Condens.Matt., 6, 8245.
  • Kresse G., Joubert D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev., 59, 1758.
  • Perdew J.P., Burke K., Ernzerhof M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18), 3865.
  • Murnaghan F. D. (1944). The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA, 50, 697.
  • Le Page Y., Saxe P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B. 65, 104104.
  • W. Voigt (1928). Lehrbuch der Kristallpysik. Taubner Leipzig, 29.
  • A. Reuss A., Angew Z. (1929)ç ZnikBerechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Math Mech., 9-49.
  • Hill R. (1952). Proc. The Elastic Behaviour of a Crystalline Aggregate. Phys. Soc., 65, 349.
  • Sinko C. V., Smirnow N. A. (2002). Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp al crystals under pressure. J. Phys.: Condens. Matter, 14, 6989.
  • Blanco M. A., Francisco E., Luana V. (2004). GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun., 158, 57.
  • Lu Y., Li D. F., Wang B. T,. Li R. W and Zhang P. (2011), Electronic structures, mechanical and thermodynamic properties of ThN from first-principles calculations. J. Nucl. Mater., 408, 136.
  • Wang R., Wang S. F., Wu X. Z. (2013). First-principles phonon calculations on the lattice dynamics and thermodynamics of rare-earth intermetallics TbCu and TbZn. Intermetallics, 43, 65.
  • Wen X. L., Liang Y. X., Bai P. P., Luo B. W., Fang T., Yue L., An T., Song W. Y., Zheng S. Q. (2017). First-principles calculations of the structural, elastic, and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2). Physica B Condens. Matter., 525, 119.
Year 2023, Volume: 4 Issue: 2, 101 - 108, 30.11.2023

Abstract

References

  • Castelvecchi D.(2020). First room-temperature superconductor excites and baffles scientists. Nature, 5867829.
  • Bardeen J., Cooper L.N., Schrieffer J.R. (1957). Theory of superconductivity. Phys. Rev., 108 (5), 1175–1204.
  • Chajewski G., Wi´sniewski P., Gnida D., Pikul A.P., Kaczorowski D. (2019). Crystal growth and physical properties of the YPd2Si2 superconductor. Cryst. Growth Des., 19(5), 2557–2563.
  • Van Delft D., Kes P. (2010). The discovery of superconductivity. Phys. Today. 63(9), 38–44.
  • Rahaman M.Z., Rahman M.A. (2017). ThCr2Si2-type Ru-based superconductors LaRu2M2 (M = P and As): An ab-initio investigation. J. Alloy. Compd., 695, 2827–2834.
  • Rahaman M.Z., Rahman M.A. (2017). Novel 122-type Ir-based superconductors BaIr2Mi2 (Mi = P and As): A density functional studyç J. Alloy. Compd., 711, 327–334.
  • Snider E., et al. (2020). Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586 (7829), 373–377,
  • Takenaka K. (2012). Negative thermal expansion materials: technological key for control of thermal expansion, Sci. Technol. Adv. Mater., 13, 013001.
  • Barrera G. D., Bruno J. A. O., Barron T. H. K, and Allan N. L. (2005). Negative thermal expansion. J. Phys.: Condens. Matter, 17, R217.
  • Chen J., Hu L., Deng J., and X. Xing. (2015). Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem. Soc. Rev., 44, 3522.
  • Mary T. A., Evans J. S. O., Vogt T., and Sleight A. W. (1996). Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science, 272, 90.
  • Takenaka K., Okamoto Y., Shinoda T., Katayama N., and Sakai Y. (2017). Colossal negative thermal expansion in reduced layered ruthenate. Nat. Commun., 8, 14102.
  • Mizuguchi Y., Kasem Md. R., and Matsuda T. D. (2021). Superconductivity in CuAl2-type Co0.2 Ni0.1Cu0.1 Rh0.3 Ir0.3Zr2 with a high-entropy-alloy transition metal site. Mater. Res. Lett., 9, 141.
  • Kresse G., Hafner J. (1993). Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47, 558 .
  • Kresse G., Furthmüller J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci., 6, 15.
  • Kresse G., Furthmüller J. (1996)ç Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 5, 11-169.
  • Kresse G., Hafner J.(1994). Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J.Phys.:Condens.Matt., 6, 8245.
  • Kresse G., Joubert D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev., 59, 1758.
  • Perdew J.P., Burke K., Ernzerhof M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18), 3865.
  • Murnaghan F. D. (1944). The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA, 50, 697.
  • Le Page Y., Saxe P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B. 65, 104104.
  • W. Voigt (1928). Lehrbuch der Kristallpysik. Taubner Leipzig, 29.
  • A. Reuss A., Angew Z. (1929)ç ZnikBerechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Math Mech., 9-49.
  • Hill R. (1952). Proc. The Elastic Behaviour of a Crystalline Aggregate. Phys. Soc., 65, 349.
  • Sinko C. V., Smirnow N. A. (2002). Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp al crystals under pressure. J. Phys.: Condens. Matter, 14, 6989.
  • Blanco M. A., Francisco E., Luana V. (2004). GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun., 158, 57.
  • Lu Y., Li D. F., Wang B. T,. Li R. W and Zhang P. (2011), Electronic structures, mechanical and thermodynamic properties of ThN from first-principles calculations. J. Nucl. Mater., 408, 136.
  • Wang R., Wang S. F., Wu X. Z. (2013). First-principles phonon calculations on the lattice dynamics and thermodynamics of rare-earth intermetallics TbCu and TbZn. Intermetallics, 43, 65.
  • Wen X. L., Liang Y. X., Bai P. P., Luo B. W., Fang T., Yue L., An T., Song W. Y., Zheng S. Q. (2017). First-principles calculations of the structural, elastic, and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2). Physica B Condens. Matter., 525, 119.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Material Physics, Condensed Matter Modelling and Density Functional Theory
Journal Section Araştırma Makaleleri
Authors

Yasemin Çiftci 0000-0003-1796-0270

İrem Almina Gemici 0000-0001-6350-4300

Gülçin Çorbacı 0000-0002-5900-5952

Publication Date November 30, 2023
Submission Date October 26, 2023
Acceptance Date November 22, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Çiftci, Y., Gemici, İ. A., & Çorbacı, G. (2023). Süperiletken CoZr2 Bileşiğinin Termodinamik Özelliklerinin Teoriksel Olarak İncelenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi, 4(2), 101-108.
AMA Çiftci Y, Gemici İA, Çorbacı G. Süperiletken CoZr2 Bileşiğinin Termodinamik Özelliklerinin Teoriksel Olarak İncelenmesi. GÜFFD. November 2023;4(2):101-108.
Chicago Çiftci, Yasemin, İrem Almina Gemici, and Gülçin Çorbacı. “Süperiletken CoZr2 Bileşiğinin Termodinamik Özelliklerinin Teoriksel Olarak İncelenmesi”. Gazi Üniversitesi Fen Fakültesi Dergisi 4, no. 2 (November 2023): 101-8.
EndNote Çiftci Y, Gemici İA, Çorbacı G (November 1, 2023) Süperiletken CoZr2 Bileşiğinin Termodinamik Özelliklerinin Teoriksel Olarak İncelenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi 4 2 101–108.
IEEE Y. Çiftci, İ. A. Gemici, and G. Çorbacı, “Süperiletken CoZr2 Bileşiğinin Termodinamik Özelliklerinin Teoriksel Olarak İncelenmesi”, GÜFFD, vol. 4, no. 2, pp. 101–108, 2023.
ISNAD Çiftci, Yasemin et al. “Süperiletken CoZr2 Bileşiğinin Termodinamik Özelliklerinin Teoriksel Olarak İncelenmesi”. Gazi Üniversitesi Fen Fakültesi Dergisi 4/2 (November 2023), 101-108.
JAMA Çiftci Y, Gemici İA, Çorbacı G. Süperiletken CoZr2 Bileşiğinin Termodinamik Özelliklerinin Teoriksel Olarak İncelenmesi. GÜFFD. 2023;4:101–108.
MLA Çiftci, Yasemin et al. “Süperiletken CoZr2 Bileşiğinin Termodinamik Özelliklerinin Teoriksel Olarak İncelenmesi”. Gazi Üniversitesi Fen Fakültesi Dergisi, vol. 4, no. 2, 2023, pp. 101-8.
Vancouver Çiftci Y, Gemici İA, Çorbacı G. Süperiletken CoZr2 Bileşiğinin Termodinamik Özelliklerinin Teoriksel Olarak İncelenmesi. GÜFFD. 2023;4(2):101-8.