Research Article
BibTex RIS Cite

New Steady State Current Error Limiters for PMSM Drives

Year 2024, , 718 - 743, 01.06.2024
https://doi.org/10.35378/gujs.1253423

Abstract

In permanent magnet synchronous motor drives, d-q current errors are examined using hysteresis controllers. The inverter is switched based on the hysteresis controller responses, to limit current errors, thereby reducing current ripple. But, due to the faster current dynamic characteristics, switching the current errors within the hysteresis band becomes difficult. This results in d-q current ripples and harmonics. In this paper, two current error-limiting schemes are proposed. In the first scheme, current errors are switched within the band using additional control parameters (dynamic response of q-axis current), to select the control space vector from a switching table. Whereas in the second scheme, a duty ratio regulator is designed to achieve minimum q-axis current error. The proposed works are simulated in MATLAB/Simulink and verified through experimentation. Since the current ripple and harmonics are also reduced, the thermal impact of these performance parameters on the power inverter is also studied.

References

  • [1] Bose, B. K. “Modern Power Electronics and AC Drives”, PHI Learning Pvt. Ltd, (2013).
  • [2] Krishnan, R. “Electric Motor Drives: Modeling, Analysis and Control”, Prentice Hall, (2002).
  • [3] Vas, P. “Sensorless Vector and Direct Torque Control”, Oxford University Press, (1998).
  • [4] Abu-Rub, H., Iqbal, A., Guzinski, J. “High Performance Control of AC Drives with Matlab/Simulink”, John Wiley & Sons, (2021).
  • [5] Takahashi, I., Noguchi, T., “A new quick-response and high-efficiency control strategy of an induction motor”, IEEE Transactions on Industry Applications, IA-22(5): 820-827, (1986).
  • [6] Takahashi, I., Ohmori, Y., “High-performance direct torque control of an induction motor”, IEEE Transactions on Industry Applications, 25(2): 257-264, (1989).
  • [7] Zhong, L., Rahman, M.F., Hu, W.Y., Lim, K.W., “Analysis of direct torque control in permanent magnet synchronous motor drives”, IEEE Transactions on Power Electronics, 12(3): 528-536, (1997).
  • [8] Casadei, D., Profumo, F., Serra, G., Tani, A., “FOC and DTC: two viable schemes for induction motors torque control”, IEEE Transactions on Power Electronics, 17(5): 779-787, (2002).
  • [9] Kumar, R.H., Iqbal, A., Lenin, N.C., “Review of recent advancements of direct torque control in induction motor drives – a decade of progress”, IET Power Electronics, 11: 1-15, (2018).
  • [10] Lemma, B.D., Pradabane, S., “Control of PMSM drive using lookup table based compensated duty ratio optimized direct torque control (DTC)”, IEEE Access, 11: 19863-19875, (2023).
  • [11] Blaschke, F. “A new method for the structural decoupling of AC induction machines”, in Conf. Rec. IFAC 1971, 1: 1-15, (1971).
  • [12] Pillay, P., Krishnan, R., “Modeling, simulation, and analysis of permanent-magnet motor drives. I. The permanent-magnet synchronous motor drive”, IEEE Transactions on Industry Applications, 25(2): 265-273, (1989).
  • [13] Kazmierkowski, M.P., Malesani, L., “Current control techniques for three-phase voltage-source PWM converters: a survey”, IEEE Transactions on Industrial Electronics, 45(5): 691-703, (1998).
  • [14] Holmes, D.G., Lipo, T.A., McGrath, B.P., Kong, W.Y., “Optimized design of stationary frame three phase AC current regulators”, IEEE Transactions on Power Electronics, 24(11): 2417-2426, (2009).
  • [15] Ullah, K., Guzinski, J., Mirza, A.F., “Critical review on robust speed control techniques for permanent magnet synchronous motor (PMSM) speed regulation”, Energies, 15(3): 1235-1247, (2022).
  • [16] Zordan, M., Vas, P., Rashed, M., Ng, C.H., Bolognani, S., Zigliotto, M., “Field‐weakening in high‐performance PMSM drives”, COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 21(2): 338-354, (2002).
  • [17] Kazmierkowski, M.P., Sulkowski, W., “A novel vector control scheme for transistor PWM inverter-fed induction motor drive”, IEEE Transactions on Industrial Electronics, 38(1): 41-47, (1991).
  • [18] Kazmierkowski, M.P., Dzieniakowski, M.A., Sulkowski, W., “Novel space vector based current controllers for PWM-inverters”, IEEE Transactions on Power Electronics, 6(1): 158-166, (1991).
  • [19] Ravi, H.K., Natesan Chokkalingam, L., “Current ripple reduction to improve electromagnetic torque and flux characteristics in AC drives”, International Journal of Electronics, 109(8): 1421-1442, (2022).
  • [20] Mohd Zaihidee, F., Mekhilef, S., Mubin, M., “Robust speed control of PMSM using sliding mode control (SMC)—A review”, Energies, 12(9): 1669-1695, (2019).
  • [21] Wang, X., Steve Suh, C.A., “Nonlinear time–frequency control based FOC for permanent magnet synchronous motors”, International Journal of Dynamics and Control, 9: 179-189, (2021).
  • [22] Rafaq, M.S., Midgley, W., Thomas Steffen, T., “Review of the state of the art of torque ripple minimization techniques for permanent magnet synchronous motors”, IEEE Transactions on Industrial Informatics, 1-13, (2023).
  • [23] van der Broeck, H.W., Skudelny, H.-C., Stanke, G.V., “Analysis and realization of a pulsewidth modulator based on voltage space vectors”, IEEE Transactions on Industry Applications, 24(1): 142-150, (1988).
  • [24] Zmood, D.N., Holmes, D.G., “Stationary frame current regulation of PWM inverters with zero steady-state error”, IEEE Transactions on Power Electronics, 18(3): 814-822, (2003).
  • [25] Holmes, D.G., Lipo, T.A., McGrath, B.P., Kong, W.Y., “Optimized design of stationary frame three phase AC current regulators”, IEEE Transactions on Power Electronics, 24(11): 2417-2426, (2009).
  • [26] Rowan, T.M., Kerkman, R.J., “A new synchronous current regulator and an analysis of current-regulated PWM inverters”, IEEE Transactions on Industry Applications, IA-22(4): 678-690, (1986).
  • [27] Sepe, R.B., Lang, J.H., “Inverter nonlinearities and discrete-time vector current control”, IEEE Transactions on Industry Applications, 30(1): 62-70, (1986).
  • [28] Singh, G.K., Singh, D.K.P., Nam, K., Lim, S.K., “A simple indirect field-oriented control scheme for multiconverter-fed induction motor”, IEEE Transactions on Industrial Electronics, 52(6): 1653-1659, (2005).
  • [29] Wang, K., Li, Y., Ge, Q., Shi, L., “An improved indirect field-oriented control scheme for linear induction motor traction drives”, IEEE Transactions on Industrial Electronics, 65(12): 9928-9937, (2018).
  • [30] Domínguez, J.R., Dueñas, I., Ortega-Cisneros, S., “Discrete-time modeling and control based on field orientation for induction motors”, IEEE Transactions on Power Electronics, 35(8): 8779-8793, (2020).
  • [31] Lorenz, R.D., Lawson, D.B., “Performance of feedforward current regulators for field-oriented induction machine controllers”, IEEE Transactions on Industry Applications, IA-23(4): 597-602, (1987).
  • [32] Dong-Choon Lee, Sul, S.-K., Min-Ho Park., “High performance current regulator for a field-oriented controlled induction motor drive”, IEEE Transactions on Industry Applications, 30(5): 1247-1257, (1994).
  • [33] Kawabata, Y., Kawakami, T., Sasakura, Y., Ejiogu, E.C., Kawabata, T., “New design method of decoupling control system for vector controlled induction motor”, IEEE Transactions on Power Electronics, 19(1): 1-9, (2004).
  • [34] Bozorgi, A.M., Farasat, M., Jafarishiadeh, S., “Model predictive current control of surface-mounted permanent magnet synchronous motor with low torque and current ripple”, IET Power Electronics, 10(10): 1120-1128, (2017).
  • [35] Qu, J., Jatskevich, J., Zhang, C., Zhang, S., “Improved multiple vector model predictive torque control of permanent magnet synchronous motor for reducing torque ripple”, IET Electric Power Applications, 15: 681-695, (2021).
  • [36] M L, P, Eshwar, K., Thippiripati, V.K., “A modified duty-modulated predictive current control for permanent magnet synchronous motor drive”, IET Electric Power Applications, 15: 25-38, (2021).
  • [37] Fan, S., Zhang, Y., Jin, J., Wang, X., Tong, C., “Deadbeat predictive current control of PMSM drives with an adaptive flux-weakening controller”, IET Power Electronics, 15: 753-763, (2022).
  • [38] Brod, D.M., Novotny, D.W., “Current control of VSI-PWM inverters”, IEEE Transactions on Industry Applications, IA-21(3): 562-570, (1985).
  • [39] Chih-Yi Huang, Chao-Peng Wei, Jung-Tai Yu, Yeu-Jent Hu., “Torque and current control of induction motor drives for inverter switching frequency reduction”, IEEE Transactions on Industrial Electronics, 52(5): 1364-1371, (2005).
  • [40] Ting-Yu Chang, Ching-Tsai Pan., “A practical vector control algorithm for /spl mu/-based induction motor drives using a new space vector current controller”, IEEE Transactions on Industrial Electronics, 41(1): 97-103, (1994).
  • [41] Ching-Tsai Pan, Ting-Yu Chang., “An improved hysteresis current controller for reducing switching frequency”, IEEE Transactions on Power Electronics, 9(1): 97-104, (1994).
  • [42] Yi-Hwa Liu, Chern-Lin Chen, Rong-Jie Tu., “A novel space-vector current regulation scheme for a field-oriented-controlled induction motor drive”, IEEE Transactions on Industrial Electronics, 45(5): 730-737, (1998).
  • [43] Bong-Hwan Kwon, Tae-Woo Kim, Jang-Hyoun Youm., “A novel SVM-based hysteresis current controller”, IEEE Transactions on Power Electronics, 13(2): 297-307, (1998).
  • [44] Vaez-Zadeh, S, Jalali, E., “Combined vector control and direct torque control method for high performance induction motor drives”, Energy Conversion and Management, 48(12): 3095-3101, (2007).
  • [45] Karimi, H, Vaez-Zadeh, S, Rajaei Salmasi, F., “Combined vector and direct thrust control of linear induction motors with end effect compensation”, IEEE Transactions on Energy Conversion, 31(1): 196-205, (2016).
  • [46] Kawamura, A., Hoft, R., “Instantaneous feedback controlled PWM inverter with adaptive hysteresis”, IEEE Transactions on Industry Applications, IA-20(4): 769-775, (1984).
  • [47] Bose, B.K., “An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system”, IEEE Transactions on Industrial Electronics, 37(5): 402-408, (1990).
  • [48] Holtz, J., Beyer, B., “The trajectory tracking approach-a new method for minimum distortion PWM in dynamic high-power drives”, IEEE Transactions on Industry Applications, 30(4): 1048-1057, (1994).
  • [49] Zhang, J., Yang, H., Wang, T., Li Li, Dorrell, D. G., Dah-Chuan Lu, D., “Field-oriented control based on hysteresis band current controller for a permanent magnet synchronous motor driven by a direct matrix converter”, IET Power Electronics, 11(7): 1277-1285, (2018).
  • [50] Holtz, J., Beyer, B., “Fast current trajectory tracking control based on synchronous optimal pulsewidth modulation”, IEEE Transactions on Industry Applications, 31(5): 1110-1120, (1995).
  • [51] Öztürk, N., Çelik, E., "An Educational Tool for the Genetic Algorithm-Based Fuzzy Logic Controller of a Permanent Magnet Synchronous Motor Drive", International Journal of Electrical Engineering & Education, 51(3): 218-231, (2014).
  • [52] Wang, Z., Yang, M., Gao, L., Wang, Z., Zhang, G., Wang, H., Xin Gu., “Deadbeat predictive current control of permanent magnet synchronous motor based on variable step-size adaline neural network parameter identification”, IET Electric Power Applications, 14(11): 2007-2015, (2020).
  • [53] Öztürk, N., Çelik, E., "Speed control of permanent magnet synchronous motors using fuzzy controller based on genetic algorithms", International Journal of Electrical Power & Energy Systems, 43(1): 889-898, (2012).
  • [54] Çelik, E., Dalcali, A., Öztürk, N., Canbaz, R., "An adaptive PI controller schema based on fuzzy logic controller for speed control of permanent magnet synchronous motors", 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 715-720, (2013).
  • [55] Masiala, M., Vafakhah, B., Salmon, J., Knight, A.M., “Fuzzy self-tuning speed control of an indirect field-oriented control induction motor drive”, IEEE Transactions on Industry Applications, 44(6): 1732-1740, (2008)
  • [56] Khiabani, A.G., Heydari, A., “Optimal torque control of permanent magnet synchronous motors using adaptive dynamic programming”, IET Power Electronics, 13(12): 2442-2449, (2020).
  • [57] Hannan, M.A., Ali, J.A., Mohamed, A., Amirulddin, U.A.U., Tan, N.M.L., Uddin, M.N., “Quantum-behaved lightning search algorithm to improve indirect field-oriented fuzzy-PI control for IM drive”, IEEE Transactions on Industry Applications, 54(4): 3793-3805, (2018).
  • [58] Farah, N., Talib, Md.H.N., Mohd Shah, N.S., Abdullah, Q., Ibrahim, Z., Lazi, J. B. M., Jidin, A., “A novel self-tuning fuzzy logic controller based induction motor drive system: an experimental approach”, IEEE Access, 7: 68172-68184, (2019).
  • [59] Jun-Koo Kang, Sul, S.-K., “New direct torque control of induction motor for minimum torque ripple and constant switching frequency”, IEEE Transactions on Industry Applications, 35(5): 1076-1082, (1999).
  • [60] Kim, S.C., “Thermal performance of motor and inverter in an integrated starter generator system for a hybrid electric vehicle”, Energies, 6(11): 6102-6119, (2013).
  • [61] Chen, K., Ahmed, S., Maly, D., Parkhill, S., Flett, F., “Comparison of thermal performance of different power electronic stack constructions”, SAE Transactions, 111(7): 772-776, (2002).
  • [62] Lemmens, J., Vanassche, P., Driesen, J., “Optimal control of traction motor drives under electrothermal constraints”, IEEE Journal of Emerging and Selected Topics in Power Electronics, 2(2): 249-263, (2014).
  • [63] Franke, T., “Current and temperature distribution in multi-chip modules under inverter operation”, in Proceedings of the 8th European Conference on Power Electronics and Applications, Lausanne, Switzerland, (1999).
  • [64] Carubelli, S., Khatir, Z., “Experimental validation of a thermal modelling method dedicated to multichip power modules in operating conditions”, Microelectronics Journal, 34(12): 1143-1151, (2003).
  • [65] Zhang, S., Wang, C., Zhong, H., Zhao, Z., Feng, J., Wu, Q., Wu, J., “Study on the temperature distribution of motor and inverter in an electric scroll compressor for vehicle air conditioning under refrigeration conditions”, International Journal of Refrigeration, 154: 111-124, (2023).
Year 2024, , 718 - 743, 01.06.2024
https://doi.org/10.35378/gujs.1253423

Abstract

References

  • [1] Bose, B. K. “Modern Power Electronics and AC Drives”, PHI Learning Pvt. Ltd, (2013).
  • [2] Krishnan, R. “Electric Motor Drives: Modeling, Analysis and Control”, Prentice Hall, (2002).
  • [3] Vas, P. “Sensorless Vector and Direct Torque Control”, Oxford University Press, (1998).
  • [4] Abu-Rub, H., Iqbal, A., Guzinski, J. “High Performance Control of AC Drives with Matlab/Simulink”, John Wiley & Sons, (2021).
  • [5] Takahashi, I., Noguchi, T., “A new quick-response and high-efficiency control strategy of an induction motor”, IEEE Transactions on Industry Applications, IA-22(5): 820-827, (1986).
  • [6] Takahashi, I., Ohmori, Y., “High-performance direct torque control of an induction motor”, IEEE Transactions on Industry Applications, 25(2): 257-264, (1989).
  • [7] Zhong, L., Rahman, M.F., Hu, W.Y., Lim, K.W., “Analysis of direct torque control in permanent magnet synchronous motor drives”, IEEE Transactions on Power Electronics, 12(3): 528-536, (1997).
  • [8] Casadei, D., Profumo, F., Serra, G., Tani, A., “FOC and DTC: two viable schemes for induction motors torque control”, IEEE Transactions on Power Electronics, 17(5): 779-787, (2002).
  • [9] Kumar, R.H., Iqbal, A., Lenin, N.C., “Review of recent advancements of direct torque control in induction motor drives – a decade of progress”, IET Power Electronics, 11: 1-15, (2018).
  • [10] Lemma, B.D., Pradabane, S., “Control of PMSM drive using lookup table based compensated duty ratio optimized direct torque control (DTC)”, IEEE Access, 11: 19863-19875, (2023).
  • [11] Blaschke, F. “A new method for the structural decoupling of AC induction machines”, in Conf. Rec. IFAC 1971, 1: 1-15, (1971).
  • [12] Pillay, P., Krishnan, R., “Modeling, simulation, and analysis of permanent-magnet motor drives. I. The permanent-magnet synchronous motor drive”, IEEE Transactions on Industry Applications, 25(2): 265-273, (1989).
  • [13] Kazmierkowski, M.P., Malesani, L., “Current control techniques for three-phase voltage-source PWM converters: a survey”, IEEE Transactions on Industrial Electronics, 45(5): 691-703, (1998).
  • [14] Holmes, D.G., Lipo, T.A., McGrath, B.P., Kong, W.Y., “Optimized design of stationary frame three phase AC current regulators”, IEEE Transactions on Power Electronics, 24(11): 2417-2426, (2009).
  • [15] Ullah, K., Guzinski, J., Mirza, A.F., “Critical review on robust speed control techniques for permanent magnet synchronous motor (PMSM) speed regulation”, Energies, 15(3): 1235-1247, (2022).
  • [16] Zordan, M., Vas, P., Rashed, M., Ng, C.H., Bolognani, S., Zigliotto, M., “Field‐weakening in high‐performance PMSM drives”, COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 21(2): 338-354, (2002).
  • [17] Kazmierkowski, M.P., Sulkowski, W., “A novel vector control scheme for transistor PWM inverter-fed induction motor drive”, IEEE Transactions on Industrial Electronics, 38(1): 41-47, (1991).
  • [18] Kazmierkowski, M.P., Dzieniakowski, M.A., Sulkowski, W., “Novel space vector based current controllers for PWM-inverters”, IEEE Transactions on Power Electronics, 6(1): 158-166, (1991).
  • [19] Ravi, H.K., Natesan Chokkalingam, L., “Current ripple reduction to improve electromagnetic torque and flux characteristics in AC drives”, International Journal of Electronics, 109(8): 1421-1442, (2022).
  • [20] Mohd Zaihidee, F., Mekhilef, S., Mubin, M., “Robust speed control of PMSM using sliding mode control (SMC)—A review”, Energies, 12(9): 1669-1695, (2019).
  • [21] Wang, X., Steve Suh, C.A., “Nonlinear time–frequency control based FOC for permanent magnet synchronous motors”, International Journal of Dynamics and Control, 9: 179-189, (2021).
  • [22] Rafaq, M.S., Midgley, W., Thomas Steffen, T., “Review of the state of the art of torque ripple minimization techniques for permanent magnet synchronous motors”, IEEE Transactions on Industrial Informatics, 1-13, (2023).
  • [23] van der Broeck, H.W., Skudelny, H.-C., Stanke, G.V., “Analysis and realization of a pulsewidth modulator based on voltage space vectors”, IEEE Transactions on Industry Applications, 24(1): 142-150, (1988).
  • [24] Zmood, D.N., Holmes, D.G., “Stationary frame current regulation of PWM inverters with zero steady-state error”, IEEE Transactions on Power Electronics, 18(3): 814-822, (2003).
  • [25] Holmes, D.G., Lipo, T.A., McGrath, B.P., Kong, W.Y., “Optimized design of stationary frame three phase AC current regulators”, IEEE Transactions on Power Electronics, 24(11): 2417-2426, (2009).
  • [26] Rowan, T.M., Kerkman, R.J., “A new synchronous current regulator and an analysis of current-regulated PWM inverters”, IEEE Transactions on Industry Applications, IA-22(4): 678-690, (1986).
  • [27] Sepe, R.B., Lang, J.H., “Inverter nonlinearities and discrete-time vector current control”, IEEE Transactions on Industry Applications, 30(1): 62-70, (1986).
  • [28] Singh, G.K., Singh, D.K.P., Nam, K., Lim, S.K., “A simple indirect field-oriented control scheme for multiconverter-fed induction motor”, IEEE Transactions on Industrial Electronics, 52(6): 1653-1659, (2005).
  • [29] Wang, K., Li, Y., Ge, Q., Shi, L., “An improved indirect field-oriented control scheme for linear induction motor traction drives”, IEEE Transactions on Industrial Electronics, 65(12): 9928-9937, (2018).
  • [30] Domínguez, J.R., Dueñas, I., Ortega-Cisneros, S., “Discrete-time modeling and control based on field orientation for induction motors”, IEEE Transactions on Power Electronics, 35(8): 8779-8793, (2020).
  • [31] Lorenz, R.D., Lawson, D.B., “Performance of feedforward current regulators for field-oriented induction machine controllers”, IEEE Transactions on Industry Applications, IA-23(4): 597-602, (1987).
  • [32] Dong-Choon Lee, Sul, S.-K., Min-Ho Park., “High performance current regulator for a field-oriented controlled induction motor drive”, IEEE Transactions on Industry Applications, 30(5): 1247-1257, (1994).
  • [33] Kawabata, Y., Kawakami, T., Sasakura, Y., Ejiogu, E.C., Kawabata, T., “New design method of decoupling control system for vector controlled induction motor”, IEEE Transactions on Power Electronics, 19(1): 1-9, (2004).
  • [34] Bozorgi, A.M., Farasat, M., Jafarishiadeh, S., “Model predictive current control of surface-mounted permanent magnet synchronous motor with low torque and current ripple”, IET Power Electronics, 10(10): 1120-1128, (2017).
  • [35] Qu, J., Jatskevich, J., Zhang, C., Zhang, S., “Improved multiple vector model predictive torque control of permanent magnet synchronous motor for reducing torque ripple”, IET Electric Power Applications, 15: 681-695, (2021).
  • [36] M L, P, Eshwar, K., Thippiripati, V.K., “A modified duty-modulated predictive current control for permanent magnet synchronous motor drive”, IET Electric Power Applications, 15: 25-38, (2021).
  • [37] Fan, S., Zhang, Y., Jin, J., Wang, X., Tong, C., “Deadbeat predictive current control of PMSM drives with an adaptive flux-weakening controller”, IET Power Electronics, 15: 753-763, (2022).
  • [38] Brod, D.M., Novotny, D.W., “Current control of VSI-PWM inverters”, IEEE Transactions on Industry Applications, IA-21(3): 562-570, (1985).
  • [39] Chih-Yi Huang, Chao-Peng Wei, Jung-Tai Yu, Yeu-Jent Hu., “Torque and current control of induction motor drives for inverter switching frequency reduction”, IEEE Transactions on Industrial Electronics, 52(5): 1364-1371, (2005).
  • [40] Ting-Yu Chang, Ching-Tsai Pan., “A practical vector control algorithm for /spl mu/-based induction motor drives using a new space vector current controller”, IEEE Transactions on Industrial Electronics, 41(1): 97-103, (1994).
  • [41] Ching-Tsai Pan, Ting-Yu Chang., “An improved hysteresis current controller for reducing switching frequency”, IEEE Transactions on Power Electronics, 9(1): 97-104, (1994).
  • [42] Yi-Hwa Liu, Chern-Lin Chen, Rong-Jie Tu., “A novel space-vector current regulation scheme for a field-oriented-controlled induction motor drive”, IEEE Transactions on Industrial Electronics, 45(5): 730-737, (1998).
  • [43] Bong-Hwan Kwon, Tae-Woo Kim, Jang-Hyoun Youm., “A novel SVM-based hysteresis current controller”, IEEE Transactions on Power Electronics, 13(2): 297-307, (1998).
  • [44] Vaez-Zadeh, S, Jalali, E., “Combined vector control and direct torque control method for high performance induction motor drives”, Energy Conversion and Management, 48(12): 3095-3101, (2007).
  • [45] Karimi, H, Vaez-Zadeh, S, Rajaei Salmasi, F., “Combined vector and direct thrust control of linear induction motors with end effect compensation”, IEEE Transactions on Energy Conversion, 31(1): 196-205, (2016).
  • [46] Kawamura, A., Hoft, R., “Instantaneous feedback controlled PWM inverter with adaptive hysteresis”, IEEE Transactions on Industry Applications, IA-20(4): 769-775, (1984).
  • [47] Bose, B.K., “An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system”, IEEE Transactions on Industrial Electronics, 37(5): 402-408, (1990).
  • [48] Holtz, J., Beyer, B., “The trajectory tracking approach-a new method for minimum distortion PWM in dynamic high-power drives”, IEEE Transactions on Industry Applications, 30(4): 1048-1057, (1994).
  • [49] Zhang, J., Yang, H., Wang, T., Li Li, Dorrell, D. G., Dah-Chuan Lu, D., “Field-oriented control based on hysteresis band current controller for a permanent magnet synchronous motor driven by a direct matrix converter”, IET Power Electronics, 11(7): 1277-1285, (2018).
  • [50] Holtz, J., Beyer, B., “Fast current trajectory tracking control based on synchronous optimal pulsewidth modulation”, IEEE Transactions on Industry Applications, 31(5): 1110-1120, (1995).
  • [51] Öztürk, N., Çelik, E., "An Educational Tool for the Genetic Algorithm-Based Fuzzy Logic Controller of a Permanent Magnet Synchronous Motor Drive", International Journal of Electrical Engineering & Education, 51(3): 218-231, (2014).
  • [52] Wang, Z., Yang, M., Gao, L., Wang, Z., Zhang, G., Wang, H., Xin Gu., “Deadbeat predictive current control of permanent magnet synchronous motor based on variable step-size adaline neural network parameter identification”, IET Electric Power Applications, 14(11): 2007-2015, (2020).
  • [53] Öztürk, N., Çelik, E., "Speed control of permanent magnet synchronous motors using fuzzy controller based on genetic algorithms", International Journal of Electrical Power & Energy Systems, 43(1): 889-898, (2012).
  • [54] Çelik, E., Dalcali, A., Öztürk, N., Canbaz, R., "An adaptive PI controller schema based on fuzzy logic controller for speed control of permanent magnet synchronous motors", 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 715-720, (2013).
  • [55] Masiala, M., Vafakhah, B., Salmon, J., Knight, A.M., “Fuzzy self-tuning speed control of an indirect field-oriented control induction motor drive”, IEEE Transactions on Industry Applications, 44(6): 1732-1740, (2008)
  • [56] Khiabani, A.G., Heydari, A., “Optimal torque control of permanent magnet synchronous motors using adaptive dynamic programming”, IET Power Electronics, 13(12): 2442-2449, (2020).
  • [57] Hannan, M.A., Ali, J.A., Mohamed, A., Amirulddin, U.A.U., Tan, N.M.L., Uddin, M.N., “Quantum-behaved lightning search algorithm to improve indirect field-oriented fuzzy-PI control for IM drive”, IEEE Transactions on Industry Applications, 54(4): 3793-3805, (2018).
  • [58] Farah, N., Talib, Md.H.N., Mohd Shah, N.S., Abdullah, Q., Ibrahim, Z., Lazi, J. B. M., Jidin, A., “A novel self-tuning fuzzy logic controller based induction motor drive system: an experimental approach”, IEEE Access, 7: 68172-68184, (2019).
  • [59] Jun-Koo Kang, Sul, S.-K., “New direct torque control of induction motor for minimum torque ripple and constant switching frequency”, IEEE Transactions on Industry Applications, 35(5): 1076-1082, (1999).
  • [60] Kim, S.C., “Thermal performance of motor and inverter in an integrated starter generator system for a hybrid electric vehicle”, Energies, 6(11): 6102-6119, (2013).
  • [61] Chen, K., Ahmed, S., Maly, D., Parkhill, S., Flett, F., “Comparison of thermal performance of different power electronic stack constructions”, SAE Transactions, 111(7): 772-776, (2002).
  • [62] Lemmens, J., Vanassche, P., Driesen, J., “Optimal control of traction motor drives under electrothermal constraints”, IEEE Journal of Emerging and Selected Topics in Power Electronics, 2(2): 249-263, (2014).
  • [63] Franke, T., “Current and temperature distribution in multi-chip modules under inverter operation”, in Proceedings of the 8th European Conference on Power Electronics and Applications, Lausanne, Switzerland, (1999).
  • [64] Carubelli, S., Khatir, Z., “Experimental validation of a thermal modelling method dedicated to multichip power modules in operating conditions”, Microelectronics Journal, 34(12): 1143-1151, (2003).
  • [65] Zhang, S., Wang, C., Zhong, H., Zhao, Z., Feng, J., Wu, Q., Wu, J., “Study on the temperature distribution of motor and inverter in an electric scroll compressor for vehicle air conditioning under refrigeration conditions”, International Journal of Refrigeration, 154: 111-124, (2023).
There are 65 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Electrical & Electronics Engineering
Authors

Hemantha Kumar Ravı 0000-0001-5378-5348

Lenın N C 0000-0002-8732-0386

Early Pub Date December 9, 2023
Publication Date June 1, 2024
Published in Issue Year 2024

Cite

APA Ravı, H. K., & N C, L. (2024). New Steady State Current Error Limiters for PMSM Drives. Gazi University Journal of Science, 37(2), 718-743. https://doi.org/10.35378/gujs.1253423
AMA Ravı HK, N C L. New Steady State Current Error Limiters for PMSM Drives. Gazi University Journal of Science. June 2024;37(2):718-743. doi:10.35378/gujs.1253423
Chicago Ravı, Hemantha Kumar, and Lenın N C. “New Steady State Current Error Limiters for PMSM Drives”. Gazi University Journal of Science 37, no. 2 (June 2024): 718-43. https://doi.org/10.35378/gujs.1253423.
EndNote Ravı HK, N C L (June 1, 2024) New Steady State Current Error Limiters for PMSM Drives. Gazi University Journal of Science 37 2 718–743.
IEEE H. K. Ravı and L. N C, “New Steady State Current Error Limiters for PMSM Drives”, Gazi University Journal of Science, vol. 37, no. 2, pp. 718–743, 2024, doi: 10.35378/gujs.1253423.
ISNAD Ravı, Hemantha Kumar - N C, Lenın. “New Steady State Current Error Limiters for PMSM Drives”. Gazi University Journal of Science 37/2 (June 2024), 718-743. https://doi.org/10.35378/gujs.1253423.
JAMA Ravı HK, N C L. New Steady State Current Error Limiters for PMSM Drives. Gazi University Journal of Science. 2024;37:718–743.
MLA Ravı, Hemantha Kumar and Lenın N C. “New Steady State Current Error Limiters for PMSM Drives”. Gazi University Journal of Science, vol. 37, no. 2, 2024, pp. 718-43, doi:10.35378/gujs.1253423.
Vancouver Ravı HK, N C L. New Steady State Current Error Limiters for PMSM Drives. Gazi University Journal of Science. 2024;37(2):718-43.