Research Article
BibTex RIS Cite
Year 2022, , 1333 - 1342, 01.12.2022
https://doi.org/10.35378/gujs.834557

Abstract

References

  • [1] Shi, M., Jiang, S., Wang, H., Xu, B., “A simplified pulse-coupled neural network for adaptive segmentation of fabric defects”, Machine Vision and Applications, 20(2): 131-138, (2009).
  • [2] Kaynar, O., Işik, Y. E., Görmez, Y., Demirkoparan, F., “Fabric defect detection with LBP-GLCM”, International Artificial Intelligence and Data Processing Symposium, 1-5, (2017).
  • [3] Zhang, L., Jing, J., Zhang, H., “Fabric defect classification based on LBP and GLCM”, Journal of Fiber Bioengineering and Informatics, 8(1): 81-89, (2015).
  • [4] Huang, C. C., Chen, I. C., “Neural-fuzzy classification for fabric defects”, Textile Research Journal, 71(3): 220-224, (2001).
  • [5] Beljadid, A., Tannouche, A., Balouki, A., “Application of deep learning for the detection of default in fabric texture”, 6th International Conference on Optimization and Applications, Morocco, (2020).
  • [6] Wang, C., Wang, D., Wang, R., Leng, J., “Textile defect detection and classification based on deep convolution neural network”, Developments of Artificial Intelligence Technologies in Computation and Robotics: Proceedings of the 14th International FLINS Conference, 1094-1101, (2020).
  • [7] Jing, J., Wang, Z., Rätsch, M., Zhang, H., “Mobile-Unet: An efficient convolutional neural network for fabric defect detection”, Textile Research Journal, 1-13, (2020).
  • [8] Wei, B., Hao, K., Tang, X. S., Ding, Y., “A new method using the convolutional neural network with compressive sensing for fabric defect classification based on small sample sizes”, Textile Research Journal, 89(17): 3539-3555, (2019).
  • [9] Ghosh, A., Guha, T., Bhar, R. B., Das, S., “Pattern classification of fabric defects using support vector machines”, International Journal of Clothing Science and Technology, 142-151, (2011).
  • [10] Salem, Y. B., Abdelkrim, M. N., “Texture classification of fabric defects using machine learning”, International Journal of Electrical and Computer Engineering, 10(4): 4390, (2020).
  • [11] Cuifang, Z., Yu, C., Jiacheng, M., “Fabric defect detection algorithm based on PHOG and SVM”, Indian Journal of Fibre & Textile Research, 45(1): 123-126, (2020).
  • [12] Abdellah, H., Ahmed, R., Slimane, O., “Defect detection and identification in textile fabric by SVM method”, International Organization of Scientific Research Journal of Engineering, 4(12): 69-77, (2014).
  • [13] Ben Salem, Y., Nasri, S., “Woven fabric defects detection based on texture classification algorithm”, 8th International Multi-Conference on Systems, Signals & Devices, Tunisia, (2011).
  • [14] Murino, V., Bicego, M., Rossi, I. A., “Statistical classification of raw textile defects”, Proceedings of the 17th International Conference on Pattern Recognition, United States, (2004).
  • [15] Yildiz, K., Buldu, A., “Wavelet transform and principal component analysis in fabric defect detection and classification”, Pamukkale University Journal of Engineering Science, 23: 622-627, (2017).
  • [16] Patil, M., Patil, S. R., “Fabric defect detection using discrete wavelet transform”, International Research Journal of Engineering and Technology, 6(6): 3495-3499, (2017).
  • [17] Deotale, N. T., Sarode, T. K., “Fabric defect detection adopting combined GLCM, Gabor wavelet features and random decision forest”, 3D Research, 10(1): 5, (2019).
  • [18] Silvestre-Blanes, J., Albero-Albero, T., Miralles, I., Pérez-Llorens, R., Moreno, J., “A Public Fabric Database for Defect Detection Methods and Results”, Autex Research Journal, 19(4): 363-374, (2019).
  • [19] Yang, T. N., Wang, S. D., “Robust algorithms for principal component analysis”, Pattern Recognition Letters, 20(9): 927-933, (1999).
  • [20] Tekeli, E., Cetin, M., Ercil, A., “A local binary patterns and shape priors based texture segmentation method”, IEEE 15th Signal Processing and Communications Applications, Turkey, (2007).
  • [21] Nabiyev, V. V., Günay, A., “LBP yardımıyla görüntüdeki kişinin yaşının bulunması”, Çankaya University Journal of Science and Engineering, 8(1): 27-41, (2010).
  • [22] Horak, K., Klecka, J., Bostik, O., Davidek, D., “Classification of SURF image features by selected machine learning algorithms”, 40th International Conference on Telecommunications and Signal Processing, Spain, (2017).
  • [23] Zhu, W., Zeng, N., Wang, N., “Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations”, NESUG proceedings: health care and life sciences, Baltimore, Maryland, 19: 67, (2010).
  • [24] Tabassian, M., Ghaderi, R., Ebrahimpour, R., “Knitted fabric defect classification for uncertain labels based on Dempster–Shafer theory of evidence”, Expert Systems with Applications, 38(5), 5259-5267, (2011).

A Suggestion System According to Fabric Control Time

Year 2022, , 1333 - 1342, 01.12.2022
https://doi.org/10.35378/gujs.834557

Abstract

Automatic systems facilitate many areas of life. The combination of image processing and machine learning has opened the door to a new world. In spite of this, most of the control is done manually in the factories where fabrics, which are the main material of textile, are produced. The studies to automate this control process are still insufficient. In this study, it is aimed to develop a system with the highest performance in a short time. Different feature extraction methods (Principal Component Analysis, Local Binary Pattern) and different classifiers (K-Nearest Neighbor, Support Vector Machine) have been tested in terms of time and different performance metrics. Different systems have been suggested depending on whether the fabric control is done during or after production.

References

  • [1] Shi, M., Jiang, S., Wang, H., Xu, B., “A simplified pulse-coupled neural network for adaptive segmentation of fabric defects”, Machine Vision and Applications, 20(2): 131-138, (2009).
  • [2] Kaynar, O., Işik, Y. E., Görmez, Y., Demirkoparan, F., “Fabric defect detection with LBP-GLCM”, International Artificial Intelligence and Data Processing Symposium, 1-5, (2017).
  • [3] Zhang, L., Jing, J., Zhang, H., “Fabric defect classification based on LBP and GLCM”, Journal of Fiber Bioengineering and Informatics, 8(1): 81-89, (2015).
  • [4] Huang, C. C., Chen, I. C., “Neural-fuzzy classification for fabric defects”, Textile Research Journal, 71(3): 220-224, (2001).
  • [5] Beljadid, A., Tannouche, A., Balouki, A., “Application of deep learning for the detection of default in fabric texture”, 6th International Conference on Optimization and Applications, Morocco, (2020).
  • [6] Wang, C., Wang, D., Wang, R., Leng, J., “Textile defect detection and classification based on deep convolution neural network”, Developments of Artificial Intelligence Technologies in Computation and Robotics: Proceedings of the 14th International FLINS Conference, 1094-1101, (2020).
  • [7] Jing, J., Wang, Z., Rätsch, M., Zhang, H., “Mobile-Unet: An efficient convolutional neural network for fabric defect detection”, Textile Research Journal, 1-13, (2020).
  • [8] Wei, B., Hao, K., Tang, X. S., Ding, Y., “A new method using the convolutional neural network with compressive sensing for fabric defect classification based on small sample sizes”, Textile Research Journal, 89(17): 3539-3555, (2019).
  • [9] Ghosh, A., Guha, T., Bhar, R. B., Das, S., “Pattern classification of fabric defects using support vector machines”, International Journal of Clothing Science and Technology, 142-151, (2011).
  • [10] Salem, Y. B., Abdelkrim, M. N., “Texture classification of fabric defects using machine learning”, International Journal of Electrical and Computer Engineering, 10(4): 4390, (2020).
  • [11] Cuifang, Z., Yu, C., Jiacheng, M., “Fabric defect detection algorithm based on PHOG and SVM”, Indian Journal of Fibre & Textile Research, 45(1): 123-126, (2020).
  • [12] Abdellah, H., Ahmed, R., Slimane, O., “Defect detection and identification in textile fabric by SVM method”, International Organization of Scientific Research Journal of Engineering, 4(12): 69-77, (2014).
  • [13] Ben Salem, Y., Nasri, S., “Woven fabric defects detection based on texture classification algorithm”, 8th International Multi-Conference on Systems, Signals & Devices, Tunisia, (2011).
  • [14] Murino, V., Bicego, M., Rossi, I. A., “Statistical classification of raw textile defects”, Proceedings of the 17th International Conference on Pattern Recognition, United States, (2004).
  • [15] Yildiz, K., Buldu, A., “Wavelet transform and principal component analysis in fabric defect detection and classification”, Pamukkale University Journal of Engineering Science, 23: 622-627, (2017).
  • [16] Patil, M., Patil, S. R., “Fabric defect detection using discrete wavelet transform”, International Research Journal of Engineering and Technology, 6(6): 3495-3499, (2017).
  • [17] Deotale, N. T., Sarode, T. K., “Fabric defect detection adopting combined GLCM, Gabor wavelet features and random decision forest”, 3D Research, 10(1): 5, (2019).
  • [18] Silvestre-Blanes, J., Albero-Albero, T., Miralles, I., Pérez-Llorens, R., Moreno, J., “A Public Fabric Database for Defect Detection Methods and Results”, Autex Research Journal, 19(4): 363-374, (2019).
  • [19] Yang, T. N., Wang, S. D., “Robust algorithms for principal component analysis”, Pattern Recognition Letters, 20(9): 927-933, (1999).
  • [20] Tekeli, E., Cetin, M., Ercil, A., “A local binary patterns and shape priors based texture segmentation method”, IEEE 15th Signal Processing and Communications Applications, Turkey, (2007).
  • [21] Nabiyev, V. V., Günay, A., “LBP yardımıyla görüntüdeki kişinin yaşının bulunması”, Çankaya University Journal of Science and Engineering, 8(1): 27-41, (2010).
  • [22] Horak, K., Klecka, J., Bostik, O., Davidek, D., “Classification of SURF image features by selected machine learning algorithms”, 40th International Conference on Telecommunications and Signal Processing, Spain, (2017).
  • [23] Zhu, W., Zeng, N., Wang, N., “Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations”, NESUG proceedings: health care and life sciences, Baltimore, Maryland, 19: 67, (2010).
  • [24] Tabassian, M., Ghaderi, R., Ebrahimpour, R., “Knitted fabric defect classification for uncertain labels based on Dempster–Shafer theory of evidence”, Expert Systems with Applications, 38(5), 5259-5267, (2011).
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Computer Engineering
Authors

Fatma Yaşar Çıklaçandır 0000-0001-6182-7173

Semih Utku 0000-0002-8786-560X

Publication Date December 1, 2022
Published in Issue Year 2022

Cite

APA Yaşar Çıklaçandır, F., & Utku, S. (2022). A Suggestion System According to Fabric Control Time. Gazi University Journal of Science, 35(4), 1333-1342. https://doi.org/10.35378/gujs.834557
AMA Yaşar Çıklaçandır F, Utku S. A Suggestion System According to Fabric Control Time. Gazi University Journal of Science. December 2022;35(4):1333-1342. doi:10.35378/gujs.834557
Chicago Yaşar Çıklaçandır, Fatma, and Semih Utku. “A Suggestion System According to Fabric Control Time”. Gazi University Journal of Science 35, no. 4 (December 2022): 1333-42. https://doi.org/10.35378/gujs.834557.
EndNote Yaşar Çıklaçandır F, Utku S (December 1, 2022) A Suggestion System According to Fabric Control Time. Gazi University Journal of Science 35 4 1333–1342.
IEEE F. Yaşar Çıklaçandır and S. Utku, “A Suggestion System According to Fabric Control Time”, Gazi University Journal of Science, vol. 35, no. 4, pp. 1333–1342, 2022, doi: 10.35378/gujs.834557.
ISNAD Yaşar Çıklaçandır, Fatma - Utku, Semih. “A Suggestion System According to Fabric Control Time”. Gazi University Journal of Science 35/4 (December 2022), 1333-1342. https://doi.org/10.35378/gujs.834557.
JAMA Yaşar Çıklaçandır F, Utku S. A Suggestion System According to Fabric Control Time. Gazi University Journal of Science. 2022;35:1333–1342.
MLA Yaşar Çıklaçandır, Fatma and Semih Utku. “A Suggestion System According to Fabric Control Time”. Gazi University Journal of Science, vol. 35, no. 4, 2022, pp. 1333-42, doi:10.35378/gujs.834557.
Vancouver Yaşar Çıklaçandır F, Utku S. A Suggestion System According to Fabric Control Time. Gazi University Journal of Science. 2022;35(4):1333-42.