Review
BibTex RIS Cite
Year 2022, , 42 - 58, 01.03.2022
https://doi.org/10.35378/gujs.840191

Abstract

References

  • [1] Meseguer J., Pérez-Grande I., Sanz-Andrés A., Spacecraft Thermal Control 2 - Space environment, 15-38, (2012).
  • [2] Birur G.C., Siebes G., Swanson T.D., Encyclopedia of Physical Science and Technology (Third Edition) Spacecraft Thermal Control, New York, 485-505, (2003).
  • [3] Sintes Arroyo P., "Mission and Thermal Analysis of UPC Cubesat", MSc. Thesis, Universitat Politecnica de Catalunya Aerospace Science and Technology, Barcelona, Spain, 125, (2009).
  • [4] Karim S., Sakib S., Islam M., Ahamed F.a.S., "A Review of Communications Satellite by Focusing on 'Bangabandhu Satellite-1', the First GEO Communications Satellite of Bangladesh", International Journal of Computer Networks and Communications, 8: 123-128, (2018).
  • [5] Meseguer J., Pérez-Grande I., Sanz-Andrés A., Spacecraft Thermal Control 19 - Thermal mathematical models, 339-348, (2012).
  • [6] Gilmore D.G., Spacecraft Thermal Control Handbook, Volume 1: Fundamental Technologies, (2002).
  • [7] Maini A.K., Agrawal V., Satellite Technology: Principles and Applications, (2010).
  • [8] Meseguer J., Pérez-Grande I., Sanz-Andrés A., Spacecraft Thermal Control 18 - Thermal control design, 327-338, (2012).
  • [9] Martinez I., Spacecraft Thermal Control, Modeling and Testing, (2019).
  • [10] Staff M.D.D., "Small Spacecraft Technology - State of the Art ", NASA/TP–2014–216648/REV1, Moffett Field, California, (2014).
  • [11] Oshima K., Oshima Y., "An Analytical Approach to the Thermal Design of Spacecrafts", Institute of Space and Aeronautical Science, (1968).
  • [12] Arduini C., Laneve G., Folco S., "Linearized techniques for solving the inverse problem in the satellite thermal control11Paper IAF 96.I6.03 presented at the 47th International Astronautical Congress, October 7–11, 1996, Beijing, China", Acta Astronautica, 43: 473-479, (1998).
  • [13] Tsai J.-R., "Overview of Satellite Thermal Analytical Model", Journal of Spacecraft and Rockets, 41: 120-125, (2004).
  • [14] Ziebart M., Adhya S., Sibthorpe A., Edwards S., Cross P., "Combined radiation pressure and thermal modelling of complex satellites: Algorithms and on-orbit tests", Advances in Space Research, 36: 424-430, (2005).
  • [15] Gadalla M.A., "Prediction of temperature variation in a rotating spacecraft in space environment", Applied Thermal Engineering, 25: 2379-2397, (2005).
  • [16] Prajapati J.C., Kachhia K.B., Kosta S.P., "Fractional calculus approach to study temperature distribution within a spinning satellite", Alexandria Engineering Journal, 55: 2345-2350, (2016).
  • [17] Chung P.N., Anh N.D., Hieu N.N., Manh D.V., "Extension of dual equivalent linearization to nonlinear analysis of thermal behavior of a two-node model for small satellites in Low Earth Orbit", International Journal of Mechanical Sciences, 133: 513-523, (2017).
  • [18] Farrahi A., Pérez-Grande I., "Simplified analysis of the thermal behavior of a spinning satellite flying over Sun-synchronous orbits", Applied Thermal Engineering, 125: 1146-1156, (2017).
  • [19] Pérez-Grande I., Sanz-Andrés A., Guerra C., Alonso G., "Analytical study of the thermal behaviour and stability of a small satellite", Applied Thermal Engineering, 29: 2567-2573, (2009).
  • [20] Gaite J., Sanz-Andrés A., Pérez-Grande I., "Nonlinear analysis of a simple model of temperature evolution in a satellite", Nonlinear Dynamics, 58: 405, (2009).
  • [21] Gaite J., "Nonlinear analysis of spacecraft thermal models", Nonlinear Dynamics, 65: 283-300, (2011).
  • [22] Baturkin V., "Micro-satellites thermal control—concepts and components", Acta Astronautica, 56: 161-170, (2005).
  • [23] Das T.K., Totani T., Wakita M., Nagata H., "A Simple Thermal Design Procedure for Micro-and Nano-satellites with Deployable Solar Array Panel", 45th International Conference on Environmental Systems, Bellevue, Washington, USA, (2015).
  • [24] Bulut M., Sozbir N., "Analytical investigation of a nanosatellite panel surface temperatures for different altitudes and panel combinations", Applied Thermal Engineering, 75: 1076-1083, (2015).
  • [25] Krishnaprakas C.K., "A Comparison of ODE Solution Methods for Spacecraft Thermal Problems", Heat Transfer Engineering, 19: 103-109, (1998).
  • [26] Lyon R., Sellers J., Underwood C., "Small satellite thermal modeling and design at USAFA: FalconSat-2 applications", Proceedings, IEEE Aerospace Conference, Big Sky, MT, USA, 7-7, (2002).
  • [27] Diaz-Aguado M., Greenbaum J., Fowler W., Lightsey G., Small satellite thermal design, test, and analysis, Orlando, FL, USA, (2006).
  • [28] Badari Narayana K., Venkata Reddy V., "Thermal design and performance of HAMSAT", Acta Astronautica, 60: 7-16, (2007).
  • [29] Sozbir N., Bulut M., Oktem M., Kahriman A., Chaix A., "Design of thermal control subsystem for TUSAT telecommunication satellite", International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2: 1384-1387, (2008).
  • [30] Bulut M., Kahriman A., Sözbir N., Design and Analysis for Thermal Control System of Nanosatellite, Vancouver, British Columbia, Canada, (2010).
  • [31] Dinh D., "Thermal Modeling of Nanosat", MSc Thesis, San Jose State University California, USA, (2012).
  • [32] Garzon M.M., "Development and Analysis of the Thermal Design for the OSIRIS-3U CubeSat", Master's Theses, Pennsylvania State University Aerospace Engineering, State College, Pennsylvania, USA, 91, (2012).
  • [33] Athirah N., Afendi M., Hafizan K., Amin N.a.M., Majid M.S.A., "Stress and Thermal Analysis of CubeSat Structure", Applied Mechanics and Materials, 554: 426-430, (2014).
  • [34] Silva D.F.D., Muraoka I., Garcia E.C., "Thermal Control Design Conception of the Amazonia-1 Satellite", Journal of Aerospace Technology and Management, 6: 169-176, (2014).
  • [35] Wachche S., Marne A., Singare S., Naik P., Bhide O., Chaudhari G., Vartak P., Pendse S., Tadwalkar C., "Thermal Modelling and Simulation of a Pico-Satellite Using Finite Element Method", 5th International Conference on Thermal Process Modeling and Computer Simulation, Orlando, FL, USA, (2014).
  • [36] Flecht T., "Thermal modelling of the PICSAT nanosatellite platform and synergetic prestudies of the CIRCUS nanosatellite", Master, Luleå University of Technology Department of Computer Science, Electrical and Space Engineering, Paris, France, (2016).
  • [37] Chandrashekar S., "Thermal Analysis and Control of MIST CubeSat", Master, KTH Royal Institute of Technology Department of Space and Plasma Physics, Stockholm, Sweden, 85, (2017).
  • [38] Björnberg A., Larsson E., "Thermal Analysis and Control of MIST", KTH Royal Institute of Technology Department of Space and Plasma Physics, Stockholm, Sweden, (2017).
  • [39] Lahrichi A., "Heat Transfer Modeling and Simulation Of MASAT1", Al Akhawayn University School of Science and Engineering, Ifran, Morocco, 44, (2017).
  • [40] Still V., "Thermal Control Design and Simulation of a Space Mission", Master of Science, Luleå University of Technology Department of Computer Science, Electrical and Space Engineering, 83, (2018).
  • [41] Wallace P., Kalapura A., Kim S.I., Thermal Modelling and Analysis of a Cube Satellite, EIRSAT-1: Steady Analysis, Orlando, FL, USA, (2018).
  • [42] Deiml M., Suderland M., Reiss P., Czupalla M., "Development and evaluation of thermal model reduction algorithms for spacecraft", Acta Astronautica, 110: 168-179, (2015).
  • [43] Corpino S., Caldera M., Nichele F., Masoero M., Viola N., "Thermal design and analysis of a nanosatellite in low earth orbit", Acta Astronautica, 115: 247-261, (2015).
  • [44] Anh N.D., Hieu N.N., Chung P.N., Anh N.T., "Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization", Applied Thermal Engineering, 94: 607-614, (2016).
  • [45] Bulut M., Sözbir Ö., Sözbir N., Thermal Control of Turksat 3U Nanosatellite, Baku, Azerbaijan, (2017).
  • [46] Steven H., Huzain M.F., "Requirements and design structure for Surya Satellite-1", IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 012063, (2018).
  • [47] Kovács R., Józsa V., "Thermal analysis of the SMOG-1 PocketQube satellite", Applied Thermal Engineering, 139: 506-513, (2018).
  • [48] Bonnici M., Mollicone P., Fenech M., Azzopardi M.A., "Analytical and numerical models for thermal related design of a new pico-satellite", Applied Thermal Engineering, 159: 113908, (2019).
  • [49] Elhefnawy A., Elweteedy A., "Thermal Analysis of a Small Satellite in Post-Mission Phase", Journal of Multidisciplinary Engineering Science and Technology (JMEST), 6: 10, (2019).
  • [50] Peabody H., "Use of TSS as a Neutral Format for Geometry Model Conversions: An Alternative to STEP-TAS", 16th European Workshop on Thermal and ECLS Software, Noordwijk, The Netherlands, (2002).
  • [51] Panczak T., Rickman S., Fried L., Welch M., "Thermal Synthesizer System: An Integrated Approach to Spacecraft Thermal Analysis", SAE Transactions, 100: 1851-1867, (1991).
  • [52] Planas Almazan P., Flett D., "ESARAD: FROM R&D TO INDUSTRIAL UTILISATION", ESA bulletin, 61-67, (1998).
  • [53] Yang K., Server N.T.R., The Anatomy of Esatan and Esarad Thermal Model Files, Pasadena, California, USA, (2013).
  • [54] Duffy K., "Intorduction to NX TMG Space Thermal", 20th European Workshop on Thermal and ECLS Software, Noordwijk, The Netherlands, (2006).

Advances in Thermal Modeling and Analysis of Satellites

Year 2022, , 42 - 58, 01.03.2022
https://doi.org/10.35378/gujs.840191

Abstract

There has been increasing interest in satellite design and manufacture. Satellites require complex components that must withstand severe mechanical and thermal conditions. Thermal design of a satellite relies on several dynamic factors. Satellites experience both extreme temperatures and rapid temperature changes. This situation induces high thermal stresses and may damage components of satellites on-board. In order to build a safely operating satellite for space conditions, this is to be modeled, simulated and tested accurately for several scenarios. Analytical approaches are established to perform thermal analysis in the early stage of satellite technology. Various methods are applied to solve heat balance equations analytically. Though the efforts provide good approximation, more detailed studies are required to perform multi-objective evaluations to determine the optimal design parameters. Numerical procedures play a crucial role for thermal modeling. Commercial software and built-in tools are useful in solving of heat balance equations numerically for achieving temperature distribution of complex and detailed structures. Besides, numerical procedures increase the accuracy and enable flexibility to designers. However, they have drawbacks on excessive calculation times. This paper focuses on available concepts in thermal modeling and analysis of satellites and to demonstrate recent trends in thermal design of satellites. The motivation of this study is to arouse the researchers to pay attention to the basic understanding for the thermal modeling and analysis of satellites under space conditions. In this review, we present useful knowledge about the novel trends and further studies to design, model and analyze the space satellites.

References

  • [1] Meseguer J., Pérez-Grande I., Sanz-Andrés A., Spacecraft Thermal Control 2 - Space environment, 15-38, (2012).
  • [2] Birur G.C., Siebes G., Swanson T.D., Encyclopedia of Physical Science and Technology (Third Edition) Spacecraft Thermal Control, New York, 485-505, (2003).
  • [3] Sintes Arroyo P., "Mission and Thermal Analysis of UPC Cubesat", MSc. Thesis, Universitat Politecnica de Catalunya Aerospace Science and Technology, Barcelona, Spain, 125, (2009).
  • [4] Karim S., Sakib S., Islam M., Ahamed F.a.S., "A Review of Communications Satellite by Focusing on 'Bangabandhu Satellite-1', the First GEO Communications Satellite of Bangladesh", International Journal of Computer Networks and Communications, 8: 123-128, (2018).
  • [5] Meseguer J., Pérez-Grande I., Sanz-Andrés A., Spacecraft Thermal Control 19 - Thermal mathematical models, 339-348, (2012).
  • [6] Gilmore D.G., Spacecraft Thermal Control Handbook, Volume 1: Fundamental Technologies, (2002).
  • [7] Maini A.K., Agrawal V., Satellite Technology: Principles and Applications, (2010).
  • [8] Meseguer J., Pérez-Grande I., Sanz-Andrés A., Spacecraft Thermal Control 18 - Thermal control design, 327-338, (2012).
  • [9] Martinez I., Spacecraft Thermal Control, Modeling and Testing, (2019).
  • [10] Staff M.D.D., "Small Spacecraft Technology - State of the Art ", NASA/TP–2014–216648/REV1, Moffett Field, California, (2014).
  • [11] Oshima K., Oshima Y., "An Analytical Approach to the Thermal Design of Spacecrafts", Institute of Space and Aeronautical Science, (1968).
  • [12] Arduini C., Laneve G., Folco S., "Linearized techniques for solving the inverse problem in the satellite thermal control11Paper IAF 96.I6.03 presented at the 47th International Astronautical Congress, October 7–11, 1996, Beijing, China", Acta Astronautica, 43: 473-479, (1998).
  • [13] Tsai J.-R., "Overview of Satellite Thermal Analytical Model", Journal of Spacecraft and Rockets, 41: 120-125, (2004).
  • [14] Ziebart M., Adhya S., Sibthorpe A., Edwards S., Cross P., "Combined radiation pressure and thermal modelling of complex satellites: Algorithms and on-orbit tests", Advances in Space Research, 36: 424-430, (2005).
  • [15] Gadalla M.A., "Prediction of temperature variation in a rotating spacecraft in space environment", Applied Thermal Engineering, 25: 2379-2397, (2005).
  • [16] Prajapati J.C., Kachhia K.B., Kosta S.P., "Fractional calculus approach to study temperature distribution within a spinning satellite", Alexandria Engineering Journal, 55: 2345-2350, (2016).
  • [17] Chung P.N., Anh N.D., Hieu N.N., Manh D.V., "Extension of dual equivalent linearization to nonlinear analysis of thermal behavior of a two-node model for small satellites in Low Earth Orbit", International Journal of Mechanical Sciences, 133: 513-523, (2017).
  • [18] Farrahi A., Pérez-Grande I., "Simplified analysis of the thermal behavior of a spinning satellite flying over Sun-synchronous orbits", Applied Thermal Engineering, 125: 1146-1156, (2017).
  • [19] Pérez-Grande I., Sanz-Andrés A., Guerra C., Alonso G., "Analytical study of the thermal behaviour and stability of a small satellite", Applied Thermal Engineering, 29: 2567-2573, (2009).
  • [20] Gaite J., Sanz-Andrés A., Pérez-Grande I., "Nonlinear analysis of a simple model of temperature evolution in a satellite", Nonlinear Dynamics, 58: 405, (2009).
  • [21] Gaite J., "Nonlinear analysis of spacecraft thermal models", Nonlinear Dynamics, 65: 283-300, (2011).
  • [22] Baturkin V., "Micro-satellites thermal control—concepts and components", Acta Astronautica, 56: 161-170, (2005).
  • [23] Das T.K., Totani T., Wakita M., Nagata H., "A Simple Thermal Design Procedure for Micro-and Nano-satellites with Deployable Solar Array Panel", 45th International Conference on Environmental Systems, Bellevue, Washington, USA, (2015).
  • [24] Bulut M., Sozbir N., "Analytical investigation of a nanosatellite panel surface temperatures for different altitudes and panel combinations", Applied Thermal Engineering, 75: 1076-1083, (2015).
  • [25] Krishnaprakas C.K., "A Comparison of ODE Solution Methods for Spacecraft Thermal Problems", Heat Transfer Engineering, 19: 103-109, (1998).
  • [26] Lyon R., Sellers J., Underwood C., "Small satellite thermal modeling and design at USAFA: FalconSat-2 applications", Proceedings, IEEE Aerospace Conference, Big Sky, MT, USA, 7-7, (2002).
  • [27] Diaz-Aguado M., Greenbaum J., Fowler W., Lightsey G., Small satellite thermal design, test, and analysis, Orlando, FL, USA, (2006).
  • [28] Badari Narayana K., Venkata Reddy V., "Thermal design and performance of HAMSAT", Acta Astronautica, 60: 7-16, (2007).
  • [29] Sozbir N., Bulut M., Oktem M., Kahriman A., Chaix A., "Design of thermal control subsystem for TUSAT telecommunication satellite", International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2: 1384-1387, (2008).
  • [30] Bulut M., Kahriman A., Sözbir N., Design and Analysis for Thermal Control System of Nanosatellite, Vancouver, British Columbia, Canada, (2010).
  • [31] Dinh D., "Thermal Modeling of Nanosat", MSc Thesis, San Jose State University California, USA, (2012).
  • [32] Garzon M.M., "Development and Analysis of the Thermal Design for the OSIRIS-3U CubeSat", Master's Theses, Pennsylvania State University Aerospace Engineering, State College, Pennsylvania, USA, 91, (2012).
  • [33] Athirah N., Afendi M., Hafizan K., Amin N.a.M., Majid M.S.A., "Stress and Thermal Analysis of CubeSat Structure", Applied Mechanics and Materials, 554: 426-430, (2014).
  • [34] Silva D.F.D., Muraoka I., Garcia E.C., "Thermal Control Design Conception of the Amazonia-1 Satellite", Journal of Aerospace Technology and Management, 6: 169-176, (2014).
  • [35] Wachche S., Marne A., Singare S., Naik P., Bhide O., Chaudhari G., Vartak P., Pendse S., Tadwalkar C., "Thermal Modelling and Simulation of a Pico-Satellite Using Finite Element Method", 5th International Conference on Thermal Process Modeling and Computer Simulation, Orlando, FL, USA, (2014).
  • [36] Flecht T., "Thermal modelling of the PICSAT nanosatellite platform and synergetic prestudies of the CIRCUS nanosatellite", Master, Luleå University of Technology Department of Computer Science, Electrical and Space Engineering, Paris, France, (2016).
  • [37] Chandrashekar S., "Thermal Analysis and Control of MIST CubeSat", Master, KTH Royal Institute of Technology Department of Space and Plasma Physics, Stockholm, Sweden, 85, (2017).
  • [38] Björnberg A., Larsson E., "Thermal Analysis and Control of MIST", KTH Royal Institute of Technology Department of Space and Plasma Physics, Stockholm, Sweden, (2017).
  • [39] Lahrichi A., "Heat Transfer Modeling and Simulation Of MASAT1", Al Akhawayn University School of Science and Engineering, Ifran, Morocco, 44, (2017).
  • [40] Still V., "Thermal Control Design and Simulation of a Space Mission", Master of Science, Luleå University of Technology Department of Computer Science, Electrical and Space Engineering, 83, (2018).
  • [41] Wallace P., Kalapura A., Kim S.I., Thermal Modelling and Analysis of a Cube Satellite, EIRSAT-1: Steady Analysis, Orlando, FL, USA, (2018).
  • [42] Deiml M., Suderland M., Reiss P., Czupalla M., "Development and evaluation of thermal model reduction algorithms for spacecraft", Acta Astronautica, 110: 168-179, (2015).
  • [43] Corpino S., Caldera M., Nichele F., Masoero M., Viola N., "Thermal design and analysis of a nanosatellite in low earth orbit", Acta Astronautica, 115: 247-261, (2015).
  • [44] Anh N.D., Hieu N.N., Chung P.N., Anh N.T., "Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization", Applied Thermal Engineering, 94: 607-614, (2016).
  • [45] Bulut M., Sözbir Ö., Sözbir N., Thermal Control of Turksat 3U Nanosatellite, Baku, Azerbaijan, (2017).
  • [46] Steven H., Huzain M.F., "Requirements and design structure for Surya Satellite-1", IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 012063, (2018).
  • [47] Kovács R., Józsa V., "Thermal analysis of the SMOG-1 PocketQube satellite", Applied Thermal Engineering, 139: 506-513, (2018).
  • [48] Bonnici M., Mollicone P., Fenech M., Azzopardi M.A., "Analytical and numerical models for thermal related design of a new pico-satellite", Applied Thermal Engineering, 159: 113908, (2019).
  • [49] Elhefnawy A., Elweteedy A., "Thermal Analysis of a Small Satellite in Post-Mission Phase", Journal of Multidisciplinary Engineering Science and Technology (JMEST), 6: 10, (2019).
  • [50] Peabody H., "Use of TSS as a Neutral Format for Geometry Model Conversions: An Alternative to STEP-TAS", 16th European Workshop on Thermal and ECLS Software, Noordwijk, The Netherlands, (2002).
  • [51] Panczak T., Rickman S., Fried L., Welch M., "Thermal Synthesizer System: An Integrated Approach to Spacecraft Thermal Analysis", SAE Transactions, 100: 1851-1867, (1991).
  • [52] Planas Almazan P., Flett D., "ESARAD: FROM R&D TO INDUSTRIAL UTILISATION", ESA bulletin, 61-67, (1998).
  • [53] Yang K., Server N.T.R., The Anatomy of Esatan and Esarad Thermal Model Files, Pasadena, California, USA, (2013).
  • [54] Duffy K., "Intorduction to NX TMG Space Thermal", 20th European Workshop on Thermal and ECLS Software, Noordwijk, The Netherlands, (2006).
There are 54 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Energy Systems Engineering
Authors

Cihan Atar 0000-0001-5945-243X

Metin Aktaş 0000-0002-3025-3987

Publication Date March 1, 2022
Published in Issue Year 2022

Cite

APA Atar, C., & Aktaş, M. (2022). Advances in Thermal Modeling and Analysis of Satellites. Gazi University Journal of Science, 35(1), 42-58. https://doi.org/10.35378/gujs.840191
AMA Atar C, Aktaş M. Advances in Thermal Modeling and Analysis of Satellites. Gazi University Journal of Science. March 2022;35(1):42-58. doi:10.35378/gujs.840191
Chicago Atar, Cihan, and Metin Aktaş. “Advances in Thermal Modeling and Analysis of Satellites”. Gazi University Journal of Science 35, no. 1 (March 2022): 42-58. https://doi.org/10.35378/gujs.840191.
EndNote Atar C, Aktaş M (March 1, 2022) Advances in Thermal Modeling and Analysis of Satellites. Gazi University Journal of Science 35 1 42–58.
IEEE C. Atar and M. Aktaş, “Advances in Thermal Modeling and Analysis of Satellites”, Gazi University Journal of Science, vol. 35, no. 1, pp. 42–58, 2022, doi: 10.35378/gujs.840191.
ISNAD Atar, Cihan - Aktaş, Metin. “Advances in Thermal Modeling and Analysis of Satellites”. Gazi University Journal of Science 35/1 (March 2022), 42-58. https://doi.org/10.35378/gujs.840191.
JAMA Atar C, Aktaş M. Advances in Thermal Modeling and Analysis of Satellites. Gazi University Journal of Science. 2022;35:42–58.
MLA Atar, Cihan and Metin Aktaş. “Advances in Thermal Modeling and Analysis of Satellites”. Gazi University Journal of Science, vol. 35, no. 1, 2022, pp. 42-58, doi:10.35378/gujs.840191.
Vancouver Atar C, Aktaş M. Advances in Thermal Modeling and Analysis of Satellites. Gazi University Journal of Science. 2022;35(1):42-58.