Research Article
BibTex RIS Cite
Year 2022, , 256 - 270, 01.03.2022
https://doi.org/10.35378/gujs.879629

Abstract

References

  • [1] Kim Y. S. and Kim Y. H., "Application of ferro-cobalt magnetic fluid for oil sealing", Journal of Magnetism and Magnetic Materials, 267(1): 105-110, (2003).
  • [2] Raj K. and Moskowitz R., "A review of damping applications of ferrofluids", IEEE Transactions on Magnetics, 16(2): 358-363, (1980).
  • [3] McMichael R., Shull R., Swartzendruber L., Bennett L. and Watson R., "Magnetocaloric effect in superparamagnets", Journal of Magnetism and Magnetic Materials, 111(1-2): 29-33, (1992).
  • [4] Cao J., Wang Y., Yu J., Xia J., Zhang C., Yin D. and Häfeli U. O., "Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy", Journal of Magnetism and Magnetic Materials, 277(1-2): 165-174, (2004).
  • [5] Shen L., Laibinis P. E. and Hatton T. A., "Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces", Langmuir, 15(2): 447-453, (1999).
  • [6] Jordan A., Scholz R., Wust P., Fähling H. and Felix R., "Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles", Journal of Magnetism and Magnetic Materials, 201(1-3): 413-419, (1999).
  • [7] Al Rahal Al Orabi R., Hwang J., Lin C.-C., Gautier R., Fontaine B., Kim W., Rhyee J.-S., Wee D. and Fornari M., "Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe: Ga materials", Chemistry of Materials, 29(2): 612-620, (2017).
  • [8] Dong J., Sun F.-H., Tang H., Hayashi K., Li H., Shang P.-P., Miyazaki Y. and Li J.-F., "Reducing lattice thermal conductivity of MnTe by Se alloying toward high thermoelectric performance", ACS applied materials & interfaces, 11(31): 28221-28227, (2019).
  • [9] Blaney L., Magnetite (Fe3O4): Properties, synthesis, and applications. Pennsylvania, 36-81, (2007).
  • [10] Lian S., Kang Z., Wang E., Jiang M., Hu C. and Xu L., "Convenient synthesis of single crystalline magnetic Fe3O4 nanorods", Solid State Communications, 127(9-10): 605-608, (2003).
  • [11] Jha M. K., Kumar V., Maharaj L. and Singh R., "Studies on leaching and recycling of zinc from rayon waste sludge", Industrial & engineering chemistry research, 43(5): 1284-1295, (2004).
  • [12] Xie J., Xu C., Kohler N., Hou Y. and Sun S., "Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non‐specific uptake by macrophage cells", Advanced Materials, 19(20): 3163-3166, (2007).
  • [13] Sun S. and Zeng H., "Size-controlled synthesis of magnetite nanoparticles", Journal of the American Chemical Society, 124(28): 8204-8205, (2002).
  • [14] Sun S., Murray C. B., Weller D., Folks L. and Moser A., "Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices", Science, 287(5460): 1989-1992, (2000).
  • [15] Shen Y., Tang J., Nie Z., Wang Y., Ren Y. and Zuo L., "Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification", Separation and Purification Technology, 68(3): 312-319, (2009).
  • [16] Pankhurst Q. A., Connolly J., Jones S. K. and Dobson J., "Applications of magnetic nanoparticles in biomedicine", Journal of physics D: Applied physics, 36(13): R167, (2003).
  • [17] Qader I. N. and Omar M. S., "Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires", Bulletin of Materials Science, 40(3): 599-607, (2017).
  • [18] Mamand S. M. and Omar M. S., "Effect of Parameters on Lattice Thermal Conductivity in Germanium Nanowires", Advanced Materials Research, 832: 33-38, (2014).
  • [19] Karim H. H. and Omar M. S., "Temperature-dependence calculation of lattice thermal conductivity and related parameters for the zinc blende and wurtzite structures of InAs nanowires", Bulletin of Materials Science, 43(1): 54, (2020).
  • [20] Mamand S., Omar M. and Muhammed A., "Calculation of lattice thermal conductivity of suspended GaAs nanobeams: Effect of size dependent parameters", Adv Mat Lett, 3(6): 449-58, (2012).
  • [21] Mamand S. M., Omar M. S. and Muhammad A. J., "Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires", Materials Research Bulletin, 47(5): 1264-1272, (2012).
  • [22] Asen-Palmer M., Bartkowski K., Gmelin E., Cardona M., Zhernov A. P., Inyushkin A. V., Taldenkov A., Ozhogin V. I., Itoh K. M. and Haller E. E., "Thermal conductivity of germanium crystals with different isotopic compositions", Physical Review B, 56(15): 9431-9447, (1997).
  • [23] Omar M. and Taha H., "Effects of nanoscale size dependent parameters on lattice thermal conductivity in Si nanowire", Sadhana, 35(2): 177-193, (2010).
  • [24] Qader I. N., Abdullah B. J. and Omar M. S., "Range Determination of the Influence of Carrier Concentration on Lattice Thermal Conductivity for Bulk Si and Nanowires", Aksaray University Journal of Science and Engineering, 4(1): 30-42, (2020).
  • [25] Su J., Liu Z.-t., Feng L.-p. and Li N., "Effect of temperature on thermal properties of monolayer MoS2 sheet", Journal of alloys and compounds, 622: 777-782, (2015).
  • [26] Park N.-W., Lee W.-Y., Kim J.-A., Song K., Lim H., Kim W.-D., Yoon S.-G. and Lee S.-K., "Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness", Nanoscale Research Letters, 9(1): 96, (2014).
  • [27] Morelli D. T., Heremans J. P. and Slack G. A., "Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors", Physical Review B, 66(19): 195304, (2002).
  • [28] Klemens P., "The scattering of low-frequency lattice waves by static imperfections", Proceedings of the Physical Society. Section A, 68(12): 1113, (1955).
  • [29] Vandersande J., "Thermal-conductivity reduction in electron-irradiated type-II a diamonds at low temperatures", Physical Review B, 15(4): 2355, (1977).
  • [30] Zhu X., Zou X., Liang B. and Cheng J., "One-way mode transmission in one-dimensional phononic crystal plates", Journal of Applied Physics, 108(12): 124909, (2010).
  • [31] Zou J., Kotchetkov D., Balandin A. A., Florescu D. I. and Pollak F. H., "Thermal conductivity of GaN films: Effects of impurities and dislocations", Journal of Applied Physics, 92(5): 2534-2539, (2002).
  • [32] Zou J. and Balandin A., "Phonon heat conduction in a semiconductor nanowire", Journal of Applied Physics, 89(5): 2932-2938, (2001).
  • [33] Kumar A., Pandya D. K. and Chaudhary S., "Structural, electronic, and magnetic behavior of two dimensional epitaxial Fe3O4/TiN/Si(100) system", Applied Physics Letters, 102(15): 152406, (2013).
  • [34] Li Z. W. and Yang Z. H., "Microwave absorption properties and mechanism for hollow Fe3O4 nanosphere composites", Journal of Magnetism and Magnetic Materials, 387: 131-138, (2015).
  • [35] Pranita L. and Preeti J., "Preparation and characterization of magnetite nanoparticle using green synthesis", Int. J. Res. Chem. Environ, 5: 38-43, (2015).
  • [36] Qader I. N., Abdullah B. J., Hassan M. A. and Mahmood P. H., "Influence of the Size Reduction on the Thermal Conductivity of Bismuth Nanowires", Eurasian Journal of Science and Engineering, 4(3): 55-65, (2019).
  • [37] Abdullah B. J., Jiang Q. and Omar M. S., "Effects of size on mass density and its influence on mechanical and thermal properties of ZrO 2 nanoparticles in different structures", Bulletin of Materials Science, 39(5): 1295-1302, (2016).
  • [38] Karim H. H. and Omar M., "Temperature-dependence calculation of lattice thermal conductivity and related parameters for the zinc blende and wurtzite structures of InAs nanowires", Bulletin of Materials Science, 43(1): 54, (2020).
  • [39] Blaney L., "Magnetite (Fe3O4): Properties, synthesis, and applications", Lehigh Reveview, 15: 32-81 (2007).
  • [40] Moskvin P. P. and Olchowik J. M., "Model of polyassosiative solutions and its application for the analysis of p–T–x equilibrium in iron-like oxide solutions and A2B6 semiconductor systems", Journal of Crystal Growth, 361: 98-102, (2012).
  • [41] Omar M., "Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles", International Journal of Thermophysics, 37(1): 11, (2016).
  • [42] Imran M., Akbar A., Riaz S., Atiq S. and Naseem S., "Electronic and Structural Properties of Phase-Pure Magnetite Thin Films: Effect of Preferred Orientation", Journal of Electronic Materials, 47(11): 6613-6624, (2018).
  • [43] Jiang Q. and Yang C., "Size effect on the phase stability of nanostructures", Current nanoscience, 4(2): 179-200, (2008).
  • [44] Qader I. N., Abdullah B. J. and Karim H. H., "Lattice Thermal Conductivity of Wurtzite Bulk and Zinc Blende CdSe Nanowires and Nanoplayer", Eurasian Journal of Science & Engineering, 3(1): 9-26, (2017).
  • [45] Omar M. S., "Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials", Materials Research Bulletin, 47(11): 3518-3522, (2012).
  • [46] Sahebari M., Raigan S., Seyed E. S. and Abdizadeh H., "Inception of transformation of hematite to magnetite during mechanical activation: a thermodynamical approach", Iranian Journal of Science and Technology Transaction B- Engineering, 33(85), (2009).
  • [47] Vasileska D., Hossain A., Raleva K. and Goodnick S. M., "The role of the source and drain contacts on self-heating effect in nanowire transistors", Journal of Computational Electronics, 9(3): 180-186, (2010).
  • [48] Poitrasson F., Iron Isotopes.In: M. Gargaud, R. Amils, J. C. Quintanilla, H. J. Cleaves, W. M. Irvine, D. L. Pinti and M. Viso, editors., Berlin, Heidelberg. 852-855 Encyclopedia of Astrobiology. Springer Berlin Heidelberg; (2011).
  • [49] Wright L. E., Oxygen Isotopes.In: A. S. Gilbert, editor., Dordrecht. 567-574 Encyclopedia of Geoarchaeology. Springer Netherlands; (2017).
  • [50] Audi G., Wapstra A. H. and Thibault C., "The Ame2003 atomic mass evaluation: (II). Tables, graphs and references", Nuclear Physics A, 729(1): 337-676, (2003).
  • [51] Velichko T. I., Mikhailenko S. N. and Tashkun S. A., "Global Multi-isotopologue fit of measured rotation and vibration–rotation line positions of CO in X1Σ+ state and new set of mass-independent Dunham coefficients", Journal of Quantitative Spectroscopy and Radiative Transfer, 113(13): 1643-1655, (2012).
  • [52] Heiße F., Köhler-Langes F., Rau S., Hou J., Junck S., Kracke A., Mooser A., Quint W., Ulmer S. and Werth G., "High-precision measurement of the proton’s atomic mass", Physical Review Letters, 119(3): 033001, (2017).
  • [53] Fei Y., Frost D. J., Mao H.-K., Prewitt C. T. and Haeusermann D., "In situ structure determination of the high-pressure phase of Fe3O4", American Mineralogist, 84(1-2): 203-206, (1999).
  • [54] Park N.-W., Lee W.-Y., Kim J.-A., Song K., Lim H., Kim W.-D., Yoon S.-G. and Lee S.-K., "Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness", Nanoscale research letters, 9(1): 1-8, (2014).
  • [55] Abdullah B. J., Omar M. S. and Jiang Q., "Size dependence of the bulk modulus of Si nanocrystals", Sadhana, 43(11): 174, (2018).
  • [56] Omar M. S., "Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles", International Journal of Thermophysics, 37(1): 11, (2016).
  • [57] Shchennikov V. V., Ovsyannikov S. V., Karkin A. E., Todo S. and Uwatoko Y., "Galvanomagnetic properties of fast neutron bombarded Fe3O4 magnetite: A case against charge ordering mechanism of the Verwey transition", Solid State Communications, 149(19): 759-762, (2009).
  • [58] Callister W. D., An Introduction: Material Science and Engineering. New York, 106-139, 2007.

Calculated Lattice Thermal Conductivity of Magnetite Thin Films based on Modified Callaway Model

Year 2022, , 256 - 270, 01.03.2022
https://doi.org/10.35378/gujs.879629

Abstract

Thermal conductivity is an important parameter for semiconductor materials used in the nanoscale applications. In this study, the lattice thermal conductivity (LTC) of magnetite thin films was simulated by Modified Callaway Model. To fit the experimental data, some quantities, such as mean bond length, the lattice constant, and volume per atom were calculated. Also, the model is based on some other quantities, such as gruneisen parameter, electron concentration, and surface roughness that were found through fitting theoretical with experimental LTC. As a result, this model could work comparably well in all sizes, and the relationship between the fitting parameters and the thickness of the magnetite films was estimated. 

References

  • [1] Kim Y. S. and Kim Y. H., "Application of ferro-cobalt magnetic fluid for oil sealing", Journal of Magnetism and Magnetic Materials, 267(1): 105-110, (2003).
  • [2] Raj K. and Moskowitz R., "A review of damping applications of ferrofluids", IEEE Transactions on Magnetics, 16(2): 358-363, (1980).
  • [3] McMichael R., Shull R., Swartzendruber L., Bennett L. and Watson R., "Magnetocaloric effect in superparamagnets", Journal of Magnetism and Magnetic Materials, 111(1-2): 29-33, (1992).
  • [4] Cao J., Wang Y., Yu J., Xia J., Zhang C., Yin D. and Häfeli U. O., "Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy", Journal of Magnetism and Magnetic Materials, 277(1-2): 165-174, (2004).
  • [5] Shen L., Laibinis P. E. and Hatton T. A., "Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces", Langmuir, 15(2): 447-453, (1999).
  • [6] Jordan A., Scholz R., Wust P., Fähling H. and Felix R., "Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles", Journal of Magnetism and Magnetic Materials, 201(1-3): 413-419, (1999).
  • [7] Al Rahal Al Orabi R., Hwang J., Lin C.-C., Gautier R., Fontaine B., Kim W., Rhyee J.-S., Wee D. and Fornari M., "Ultralow lattice thermal conductivity and enhanced thermoelectric performance in SnTe: Ga materials", Chemistry of Materials, 29(2): 612-620, (2017).
  • [8] Dong J., Sun F.-H., Tang H., Hayashi K., Li H., Shang P.-P., Miyazaki Y. and Li J.-F., "Reducing lattice thermal conductivity of MnTe by Se alloying toward high thermoelectric performance", ACS applied materials & interfaces, 11(31): 28221-28227, (2019).
  • [9] Blaney L., Magnetite (Fe3O4): Properties, synthesis, and applications. Pennsylvania, 36-81, (2007).
  • [10] Lian S., Kang Z., Wang E., Jiang M., Hu C. and Xu L., "Convenient synthesis of single crystalline magnetic Fe3O4 nanorods", Solid State Communications, 127(9-10): 605-608, (2003).
  • [11] Jha M. K., Kumar V., Maharaj L. and Singh R., "Studies on leaching and recycling of zinc from rayon waste sludge", Industrial & engineering chemistry research, 43(5): 1284-1295, (2004).
  • [12] Xie J., Xu C., Kohler N., Hou Y. and Sun S., "Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non‐specific uptake by macrophage cells", Advanced Materials, 19(20): 3163-3166, (2007).
  • [13] Sun S. and Zeng H., "Size-controlled synthesis of magnetite nanoparticles", Journal of the American Chemical Society, 124(28): 8204-8205, (2002).
  • [14] Sun S., Murray C. B., Weller D., Folks L. and Moser A., "Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices", Science, 287(5460): 1989-1992, (2000).
  • [15] Shen Y., Tang J., Nie Z., Wang Y., Ren Y. and Zuo L., "Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification", Separation and Purification Technology, 68(3): 312-319, (2009).
  • [16] Pankhurst Q. A., Connolly J., Jones S. K. and Dobson J., "Applications of magnetic nanoparticles in biomedicine", Journal of physics D: Applied physics, 36(13): R167, (2003).
  • [17] Qader I. N. and Omar M. S., "Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires", Bulletin of Materials Science, 40(3): 599-607, (2017).
  • [18] Mamand S. M. and Omar M. S., "Effect of Parameters on Lattice Thermal Conductivity in Germanium Nanowires", Advanced Materials Research, 832: 33-38, (2014).
  • [19] Karim H. H. and Omar M. S., "Temperature-dependence calculation of lattice thermal conductivity and related parameters for the zinc blende and wurtzite structures of InAs nanowires", Bulletin of Materials Science, 43(1): 54, (2020).
  • [20] Mamand S., Omar M. and Muhammed A., "Calculation of lattice thermal conductivity of suspended GaAs nanobeams: Effect of size dependent parameters", Adv Mat Lett, 3(6): 449-58, (2012).
  • [21] Mamand S. M., Omar M. S. and Muhammad A. J., "Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires", Materials Research Bulletin, 47(5): 1264-1272, (2012).
  • [22] Asen-Palmer M., Bartkowski K., Gmelin E., Cardona M., Zhernov A. P., Inyushkin A. V., Taldenkov A., Ozhogin V. I., Itoh K. M. and Haller E. E., "Thermal conductivity of germanium crystals with different isotopic compositions", Physical Review B, 56(15): 9431-9447, (1997).
  • [23] Omar M. and Taha H., "Effects of nanoscale size dependent parameters on lattice thermal conductivity in Si nanowire", Sadhana, 35(2): 177-193, (2010).
  • [24] Qader I. N., Abdullah B. J. and Omar M. S., "Range Determination of the Influence of Carrier Concentration on Lattice Thermal Conductivity for Bulk Si and Nanowires", Aksaray University Journal of Science and Engineering, 4(1): 30-42, (2020).
  • [25] Su J., Liu Z.-t., Feng L.-p. and Li N., "Effect of temperature on thermal properties of monolayer MoS2 sheet", Journal of alloys and compounds, 622: 777-782, (2015).
  • [26] Park N.-W., Lee W.-Y., Kim J.-A., Song K., Lim H., Kim W.-D., Yoon S.-G. and Lee S.-K., "Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness", Nanoscale Research Letters, 9(1): 96, (2014).
  • [27] Morelli D. T., Heremans J. P. and Slack G. A., "Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors", Physical Review B, 66(19): 195304, (2002).
  • [28] Klemens P., "The scattering of low-frequency lattice waves by static imperfections", Proceedings of the Physical Society. Section A, 68(12): 1113, (1955).
  • [29] Vandersande J., "Thermal-conductivity reduction in electron-irradiated type-II a diamonds at low temperatures", Physical Review B, 15(4): 2355, (1977).
  • [30] Zhu X., Zou X., Liang B. and Cheng J., "One-way mode transmission in one-dimensional phononic crystal plates", Journal of Applied Physics, 108(12): 124909, (2010).
  • [31] Zou J., Kotchetkov D., Balandin A. A., Florescu D. I. and Pollak F. H., "Thermal conductivity of GaN films: Effects of impurities and dislocations", Journal of Applied Physics, 92(5): 2534-2539, (2002).
  • [32] Zou J. and Balandin A., "Phonon heat conduction in a semiconductor nanowire", Journal of Applied Physics, 89(5): 2932-2938, (2001).
  • [33] Kumar A., Pandya D. K. and Chaudhary S., "Structural, electronic, and magnetic behavior of two dimensional epitaxial Fe3O4/TiN/Si(100) system", Applied Physics Letters, 102(15): 152406, (2013).
  • [34] Li Z. W. and Yang Z. H., "Microwave absorption properties and mechanism for hollow Fe3O4 nanosphere composites", Journal of Magnetism and Magnetic Materials, 387: 131-138, (2015).
  • [35] Pranita L. and Preeti J., "Preparation and characterization of magnetite nanoparticle using green synthesis", Int. J. Res. Chem. Environ, 5: 38-43, (2015).
  • [36] Qader I. N., Abdullah B. J., Hassan M. A. and Mahmood P. H., "Influence of the Size Reduction on the Thermal Conductivity of Bismuth Nanowires", Eurasian Journal of Science and Engineering, 4(3): 55-65, (2019).
  • [37] Abdullah B. J., Jiang Q. and Omar M. S., "Effects of size on mass density and its influence on mechanical and thermal properties of ZrO 2 nanoparticles in different structures", Bulletin of Materials Science, 39(5): 1295-1302, (2016).
  • [38] Karim H. H. and Omar M., "Temperature-dependence calculation of lattice thermal conductivity and related parameters for the zinc blende and wurtzite structures of InAs nanowires", Bulletin of Materials Science, 43(1): 54, (2020).
  • [39] Blaney L., "Magnetite (Fe3O4): Properties, synthesis, and applications", Lehigh Reveview, 15: 32-81 (2007).
  • [40] Moskvin P. P. and Olchowik J. M., "Model of polyassosiative solutions and its application for the analysis of p–T–x equilibrium in iron-like oxide solutions and A2B6 semiconductor systems", Journal of Crystal Growth, 361: 98-102, (2012).
  • [41] Omar M., "Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles", International Journal of Thermophysics, 37(1): 11, (2016).
  • [42] Imran M., Akbar A., Riaz S., Atiq S. and Naseem S., "Electronic and Structural Properties of Phase-Pure Magnetite Thin Films: Effect of Preferred Orientation", Journal of Electronic Materials, 47(11): 6613-6624, (2018).
  • [43] Jiang Q. and Yang C., "Size effect on the phase stability of nanostructures", Current nanoscience, 4(2): 179-200, (2008).
  • [44] Qader I. N., Abdullah B. J. and Karim H. H., "Lattice Thermal Conductivity of Wurtzite Bulk and Zinc Blende CdSe Nanowires and Nanoplayer", Eurasian Journal of Science & Engineering, 3(1): 9-26, (2017).
  • [45] Omar M. S., "Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials", Materials Research Bulletin, 47(11): 3518-3522, (2012).
  • [46] Sahebari M., Raigan S., Seyed E. S. and Abdizadeh H., "Inception of transformation of hematite to magnetite during mechanical activation: a thermodynamical approach", Iranian Journal of Science and Technology Transaction B- Engineering, 33(85), (2009).
  • [47] Vasileska D., Hossain A., Raleva K. and Goodnick S. M., "The role of the source and drain contacts on self-heating effect in nanowire transistors", Journal of Computational Electronics, 9(3): 180-186, (2010).
  • [48] Poitrasson F., Iron Isotopes.In: M. Gargaud, R. Amils, J. C. Quintanilla, H. J. Cleaves, W. M. Irvine, D. L. Pinti and M. Viso, editors., Berlin, Heidelberg. 852-855 Encyclopedia of Astrobiology. Springer Berlin Heidelberg; (2011).
  • [49] Wright L. E., Oxygen Isotopes.In: A. S. Gilbert, editor., Dordrecht. 567-574 Encyclopedia of Geoarchaeology. Springer Netherlands; (2017).
  • [50] Audi G., Wapstra A. H. and Thibault C., "The Ame2003 atomic mass evaluation: (II). Tables, graphs and references", Nuclear Physics A, 729(1): 337-676, (2003).
  • [51] Velichko T. I., Mikhailenko S. N. and Tashkun S. A., "Global Multi-isotopologue fit of measured rotation and vibration–rotation line positions of CO in X1Σ+ state and new set of mass-independent Dunham coefficients", Journal of Quantitative Spectroscopy and Radiative Transfer, 113(13): 1643-1655, (2012).
  • [52] Heiße F., Köhler-Langes F., Rau S., Hou J., Junck S., Kracke A., Mooser A., Quint W., Ulmer S. and Werth G., "High-precision measurement of the proton’s atomic mass", Physical Review Letters, 119(3): 033001, (2017).
  • [53] Fei Y., Frost D. J., Mao H.-K., Prewitt C. T. and Haeusermann D., "In situ structure determination of the high-pressure phase of Fe3O4", American Mineralogist, 84(1-2): 203-206, (1999).
  • [54] Park N.-W., Lee W.-Y., Kim J.-A., Song K., Lim H., Kim W.-D., Yoon S.-G. and Lee S.-K., "Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness", Nanoscale research letters, 9(1): 1-8, (2014).
  • [55] Abdullah B. J., Omar M. S. and Jiang Q., "Size dependence of the bulk modulus of Si nanocrystals", Sadhana, 43(11): 174, (2018).
  • [56] Omar M. S., "Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles", International Journal of Thermophysics, 37(1): 11, (2016).
  • [57] Shchennikov V. V., Ovsyannikov S. V., Karkin A. E., Todo S. and Uwatoko Y., "Galvanomagnetic properties of fast neutron bombarded Fe3O4 magnetite: A case against charge ordering mechanism of the Verwey transition", Solid State Communications, 149(19): 759-762, (2009).
  • [58] Callister W. D., An Introduction: Material Science and Engineering. New York, 106-139, 2007.
There are 58 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

Ibrahim Nazem Qader 0000-0003-1167-3799

Ecem Öner 0000-0001-8784-8044

Mediha Kök 0000-0001-7404-4311

Publication Date March 1, 2022
Published in Issue Year 2022

Cite

APA Qader, I. N., Öner, E., & Kök, M. (2022). Calculated Lattice Thermal Conductivity of Magnetite Thin Films based on Modified Callaway Model. Gazi University Journal of Science, 35(1), 256-270. https://doi.org/10.35378/gujs.879629
AMA Qader IN, Öner E, Kök M. Calculated Lattice Thermal Conductivity of Magnetite Thin Films based on Modified Callaway Model. Gazi University Journal of Science. March 2022;35(1):256-270. doi:10.35378/gujs.879629
Chicago Qader, Ibrahim Nazem, Ecem Öner, and Mediha Kök. “Calculated Lattice Thermal Conductivity of Magnetite Thin Films Based on Modified Callaway Model”. Gazi University Journal of Science 35, no. 1 (March 2022): 256-70. https://doi.org/10.35378/gujs.879629.
EndNote Qader IN, Öner E, Kök M (March 1, 2022) Calculated Lattice Thermal Conductivity of Magnetite Thin Films based on Modified Callaway Model. Gazi University Journal of Science 35 1 256–270.
IEEE I. N. Qader, E. Öner, and M. Kök, “Calculated Lattice Thermal Conductivity of Magnetite Thin Films based on Modified Callaway Model”, Gazi University Journal of Science, vol. 35, no. 1, pp. 256–270, 2022, doi: 10.35378/gujs.879629.
ISNAD Qader, Ibrahim Nazem et al. “Calculated Lattice Thermal Conductivity of Magnetite Thin Films Based on Modified Callaway Model”. Gazi University Journal of Science 35/1 (March 2022), 256-270. https://doi.org/10.35378/gujs.879629.
JAMA Qader IN, Öner E, Kök M. Calculated Lattice Thermal Conductivity of Magnetite Thin Films based on Modified Callaway Model. Gazi University Journal of Science. 2022;35:256–270.
MLA Qader, Ibrahim Nazem et al. “Calculated Lattice Thermal Conductivity of Magnetite Thin Films Based on Modified Callaway Model”. Gazi University Journal of Science, vol. 35, no. 1, 2022, pp. 256-70, doi:10.35378/gujs.879629.
Vancouver Qader IN, Öner E, Kök M. Calculated Lattice Thermal Conductivity of Magnetite Thin Films based on Modified Callaway Model. Gazi University Journal of Science. 2022;35(1):256-70.