Research Article
BibTex RIS Cite
Year 2022, , 1031 - 1049, 01.09.2022
https://doi.org/10.35378/gujs.911475

Abstract

References

  • [1] Beck, R., Kolman, B., Stewant, I., “Computing the structure of a Lie algebra”, book chapter in Non-associative rings and algebras, 1st ed, Editor(s): Beck, R., Kolman, B., New York, Academic Press,(1977).
  • [2] Ceballos, M., Nez, J., Tenorio, F., “Algorithm to compute minimal matrix representation of nilpotent Lie algebras”, International Journal of Computer Mathematics, 97(1-2): 275-293, (2020).
  • [3] De Graaf, W.A. Lie algebras theory and algorithms 1st ed, Elsevier, Amsterdam, (2000).
  • [4] De Graaf, W.A. “Calculating the structure of semi-simple Lie algebra”, Journal of Pure and Applied Algebra, (117 & 118): 319-329, (1997).
  • [5] Ronyai, L., “Computing the structure of finite algebra”, Journal of Symbolic Computation, 9: 355-373, (1990).
  • [6] Nikolayevsky, Y., “Einstein solvmanifolds with a simple Einstein derivation”, Geometriae Dedicata, 135: 87-102, (2008).
  • [7] Lauret, J., “Einstein solvmanifolds and nilsolitons”, Contemporary Mathematics, 491: 1-35, (2009).
  • [8] Lauret, J., Will, C., “Einstein solvmanifolds: existence and nonexistence questions”, Mathematische Annalen, 350(1): 199-225, (2011).
  • [9] Arroyo, R.M., “Filiform nilsolitons of dimension 8”, Rocky Mountain Journal of Mathematics, 41(4): 1025-1043, (2011).
  • [10] Culma, E.A.F., “Classification of 7-dimensional Einstein nilradicals”, Transformation Groups, 17(3): 639-656, (2012). DOI: 10.1007/s00031-012-9186-5
  • [11] De Graaf, W.A., “Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic no 2”, Journal of Algebra, 309(2): 640-653, (2007).
  • [12] Lauret, J., “Finding Einstein solvmanifolds by a variational method”, Mathematische Zeitschrift, 241(1): 83-99, (2002).
  • [13] Payne, T.L., “Geometric invariants for nilpotent metric Lie algebras with applications to moduli spaces of nilsoliton metrics”, Annals of Global Analysis and Geometry, 41(2): 139-160, (2012).
  • [14] Will, C., “Rank-one Einstein solvmanifolds of dimension 7”, Differential Geometry and its Applications, 19(3): 307-318, (2003).
  • [15] Kadioglu, H., Payne, T.L., “Computational methods for nilsoliton metric Lie algebras I”, Journal of Symbolic Computation, 50: 350 -373, (2013).
  • [16] Culma, E.A.F., “Classification of 7-dimensional Einstein nilradicals II”, Technical Report, arXiv:1105.4493 (2011).
  • [17] Kadioglu, H., “Classification of ordered type soliton metric Lie algebras by a computational approach”, Abstract and Applied Analysis, 2013, Article ID 871930, (2013).
  • [18] Nikolayevsky, Y., “Einstein solvmanifolds and the pre-Einstein derivation”, Transactions of the American Mathematical Society, 363(8): 3935-3958, (2011).
  • [19] Kadioglu, H., “A computational procedure on higher dimensional nilsolitons”, Mathematical Methods in the Applied Sciences, 42 (16): 5390-5397, (2019).
  • [20] Kadioglu, H., “On some structural components of nilsolitons”, Mathematical Problems in Engineering, 2021, Article ID 5540584, (2021).
  • [21] Payne, T.L., “The existence of soliton metrics for nilpotent Lie groups”, Geometriae Dedicata, 145: 71-88, (2012).
  • [22] Adimi, H., Makhlouf, A., “Computing the index of Lie algebras”, Proceedings of the Estonian Academy of Sciences, 59 (4): 265-271, (2010).

Classification of 8-dimensional Nilsolitons by Symbolic Computation

Year 2022, , 1031 - 1049, 01.09.2022
https://doi.org/10.35378/gujs.911475

Abstract

In this paper, we develop an algorithm to classify 8 dimensional nilsolitons with simple nilsoliton derivation. We restrict our classifications to the nilsolitons corresponding to singular Gram matrix with nullity 1-3. This work can be considered as a continuation paper to our previous study where we introduced a procedure to classify algebras in dimension 8 that admit simple derivations and singular Gram matrices U. Having the singular Gram matrices, there exists infinitely many solutions to Uv =[1]_m , where the solutions are exactly the squares of the structure constants. Also, the structure constants have to satisfy the Jacobi identity for the algebra to be a Lie algebra. In our previous work, we did not introduce a procedure to create and solve the Jacobi identity(s). In this study, we take care of this issue by using computer algorithms for each index set. Thus, we complete classification of all 8 dimensional in-decomposable nilsolitons with the nullity of corresponding Gram matrix is in the set {0,1,2,3}. We provide several examples to illustrate the algorithm. For the implementation process of the newly introduced algorithm, we use MATLAB R2020b.

References

  • [1] Beck, R., Kolman, B., Stewant, I., “Computing the structure of a Lie algebra”, book chapter in Non-associative rings and algebras, 1st ed, Editor(s): Beck, R., Kolman, B., New York, Academic Press,(1977).
  • [2] Ceballos, M., Nez, J., Tenorio, F., “Algorithm to compute minimal matrix representation of nilpotent Lie algebras”, International Journal of Computer Mathematics, 97(1-2): 275-293, (2020).
  • [3] De Graaf, W.A. Lie algebras theory and algorithms 1st ed, Elsevier, Amsterdam, (2000).
  • [4] De Graaf, W.A. “Calculating the structure of semi-simple Lie algebra”, Journal of Pure and Applied Algebra, (117 & 118): 319-329, (1997).
  • [5] Ronyai, L., “Computing the structure of finite algebra”, Journal of Symbolic Computation, 9: 355-373, (1990).
  • [6] Nikolayevsky, Y., “Einstein solvmanifolds with a simple Einstein derivation”, Geometriae Dedicata, 135: 87-102, (2008).
  • [7] Lauret, J., “Einstein solvmanifolds and nilsolitons”, Contemporary Mathematics, 491: 1-35, (2009).
  • [8] Lauret, J., Will, C., “Einstein solvmanifolds: existence and nonexistence questions”, Mathematische Annalen, 350(1): 199-225, (2011).
  • [9] Arroyo, R.M., “Filiform nilsolitons of dimension 8”, Rocky Mountain Journal of Mathematics, 41(4): 1025-1043, (2011).
  • [10] Culma, E.A.F., “Classification of 7-dimensional Einstein nilradicals”, Transformation Groups, 17(3): 639-656, (2012). DOI: 10.1007/s00031-012-9186-5
  • [11] De Graaf, W.A., “Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic no 2”, Journal of Algebra, 309(2): 640-653, (2007).
  • [12] Lauret, J., “Finding Einstein solvmanifolds by a variational method”, Mathematische Zeitschrift, 241(1): 83-99, (2002).
  • [13] Payne, T.L., “Geometric invariants for nilpotent metric Lie algebras with applications to moduli spaces of nilsoliton metrics”, Annals of Global Analysis and Geometry, 41(2): 139-160, (2012).
  • [14] Will, C., “Rank-one Einstein solvmanifolds of dimension 7”, Differential Geometry and its Applications, 19(3): 307-318, (2003).
  • [15] Kadioglu, H., Payne, T.L., “Computational methods for nilsoliton metric Lie algebras I”, Journal of Symbolic Computation, 50: 350 -373, (2013).
  • [16] Culma, E.A.F., “Classification of 7-dimensional Einstein nilradicals II”, Technical Report, arXiv:1105.4493 (2011).
  • [17] Kadioglu, H., “Classification of ordered type soliton metric Lie algebras by a computational approach”, Abstract and Applied Analysis, 2013, Article ID 871930, (2013).
  • [18] Nikolayevsky, Y., “Einstein solvmanifolds and the pre-Einstein derivation”, Transactions of the American Mathematical Society, 363(8): 3935-3958, (2011).
  • [19] Kadioglu, H., “A computational procedure on higher dimensional nilsolitons”, Mathematical Methods in the Applied Sciences, 42 (16): 5390-5397, (2019).
  • [20] Kadioglu, H., “On some structural components of nilsolitons”, Mathematical Problems in Engineering, 2021, Article ID 5540584, (2021).
  • [21] Payne, T.L., “The existence of soliton metrics for nilpotent Lie groups”, Geometriae Dedicata, 145: 71-88, (2012).
  • [22] Adimi, H., Makhlouf, A., “Computing the index of Lie algebras”, Proceedings of the Estonian Academy of Sciences, 59 (4): 265-271, (2010).
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Hülya Kadıoğlu 0000-0002-9832-2758

Publication Date September 1, 2022
Published in Issue Year 2022

Cite

APA Kadıoğlu, H. (2022). Classification of 8-dimensional Nilsolitons by Symbolic Computation. Gazi University Journal of Science, 35(3), 1031-1049. https://doi.org/10.35378/gujs.911475
AMA Kadıoğlu H. Classification of 8-dimensional Nilsolitons by Symbolic Computation. Gazi University Journal of Science. September 2022;35(3):1031-1049. doi:10.35378/gujs.911475
Chicago Kadıoğlu, Hülya. “Classification of 8-Dimensional Nilsolitons by Symbolic Computation”. Gazi University Journal of Science 35, no. 3 (September 2022): 1031-49. https://doi.org/10.35378/gujs.911475.
EndNote Kadıoğlu H (September 1, 2022) Classification of 8-dimensional Nilsolitons by Symbolic Computation. Gazi University Journal of Science 35 3 1031–1049.
IEEE H. Kadıoğlu, “Classification of 8-dimensional Nilsolitons by Symbolic Computation”, Gazi University Journal of Science, vol. 35, no. 3, pp. 1031–1049, 2022, doi: 10.35378/gujs.911475.
ISNAD Kadıoğlu, Hülya. “Classification of 8-Dimensional Nilsolitons by Symbolic Computation”. Gazi University Journal of Science 35/3 (September 2022), 1031-1049. https://doi.org/10.35378/gujs.911475.
JAMA Kadıoğlu H. Classification of 8-dimensional Nilsolitons by Symbolic Computation. Gazi University Journal of Science. 2022;35:1031–1049.
MLA Kadıoğlu, Hülya. “Classification of 8-Dimensional Nilsolitons by Symbolic Computation”. Gazi University Journal of Science, vol. 35, no. 3, 2022, pp. 1031-49, doi:10.35378/gujs.911475.
Vancouver Kadıoğlu H. Classification of 8-dimensional Nilsolitons by Symbolic Computation. Gazi University Journal of Science. 2022;35(3):1031-49.