10 μm," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 19, pp. 1200407-1200407, 2013." />
 
BibTex RIS Cite

GROWTH OF INGAAS/INALAS SUPERLATTICES BY MOCVD AND PRECISE THICKNESS DETERMINATION VIA HRXRD

Year 2016, Volume: 29 Issue: 4, 947 - 951, 19.12.2016

Abstract

In this study, we report the growth studies of InGaAs/InAlAs superlattices (SLs) with thin layer thicknesses which will be used for quantum cascade laser (QCL) structures, grown by Metal Organic Chemical Vapor Deposition (MOCVD) technique.  We utilize high resolution X-ray diffraction (HRXRD) to determine the single layer thickness and period thicknesses of SLs. Measurement results show that by establishing very low growth rates (~0,1 nm/s), the single thin layers and SLs can be grown well by MOCVD in a  controllable and repeatable way with high crystalline and interface quality.

References

  • M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Illegems, E. Gini, and H. Melchior. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science, 295:5553–5557, 2002.
  • S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist. Above room temperature operation of short wavelength quantum cascade lasers at λ=5.4μm. Appl. Phys. Lett., 86:041109, 2005
  • M. P. Semtsiv, M. Ziegler, S. Dressler, W. T. Masselink, N. Georgiev, T. Dekorsy, and M. Helm. Above room temperature operation of short wavelength (3.8 μm) strain-compensated In0.73Ga0.27As–AlAs quantum cascade lasers. Appl. Phys. Lett., 85:1478–1480, 2004.
  • Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, "Quantum cascade lasers that emit more light than heat," Nat Photon, vol. 4, pp. 99-102, 02//print 2010.
  • R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, "λ ~ 7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature," Optics Express, vol. 19, pp. 17203-17211, 2011/08/29 2011.
  • F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, "Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 19, pp. 1200407-1200407, 2013.
  • N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, M. Razeghi, "Watt level performance of quantum cascade lasers in room temperature continuous wave operation at lambda ~ 3.76 μm," Applied Physics Letters, vol. 97, pp. 131117-3, 09/27/ 2010.
  • X. Q. Lu · D. Y. Xiong · X. Tong, Photoresponse of InGaAs/GaAs multiple-period very-long-wavelength quantum well infrared photodetectors
  • Opt Quant Electron (2015) 47:1429–1436
  • L. Guerra, G, M. Pene, L. D. Pintol, R. Jakomin, R. T. Moura, M. P. Pires, M. H. Degani, M. Z. Maialle and P. L. Souza, “InGaAs/InAIAs quantum well infrared photodetectors for operation in the 1.7 to 3.1 µm wavelength range”, Microelectronics Technology and Devices (SBMicro), 2014 29th Symposium on, 1 – 3 10.1109/SBMicro.2014.6940111
  • Brian R. Bennett, Theresa F. Chick, J. Brad Boos, James G. Champlain, Adrian A. Podpirka, “Strained InGaAs/InAlAs quantum wells for complementary III–V transistors”
  • Journal of Crystal Growth 388 (2014) 92–97.
  • Jung-Hui Tsai, Chia-Hong Huang, Jhih-Jhong Ou-Yang, Yi-Ting Chao, Jia-Cing Jhou, You-Ren Wu, “Performance and direct-coupled FET logic applications of InAlAs/InGaAs co-integrated field-effect transistors by 2-D simulation”, Thin Solid Films 547 (2013) 267–271.
  • N. A. Yuzeeva, A. V. Sorokoumova, R. A. Lunin, L. N. Oveshnikov, G. B. Galiev, E. A. Klimov, D. V. Lavruchin, V. A. Kulbachinskii, “Electron Mobilities and Effective Masses in InGaAs/InAlAs HEMT Structures with High In Content” J. Low Temp. Phys., DOI 10.1007/s10909-016-1589-6
  • Umesh P. Gomes, Yiqiao Chen, Sanjib Kabi, Peter Chow, Dhrubes Biswas, “Quantum well engineering of InAlAs/InGaAs HEMTs for low impact ionization applications”, Current Applied Physics 13 (2013) 487-492
  • I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III--V compound semiconductors and their alloys," Journal of Applied Physics, vol. 89, pp. 5815-5875, 06/01/ 2001.
  • Bandyopadhyay Neelanjan, Modelling, Design, Growth and Characterization of Strain Balanced Quantum Cascade Lasers (3-11μm), grown by Gas Source Molecular Beam Epitaxy, Ph.D Northwestern University, 2015, Publication Number: AAT 3705212
  • S. G. Razavipour, E. Dupont, Z. R. Wasilewski, D. Ban” Effect of Interface Roughness Scattering on performance of Indirectly-Pumped Terahertz Quantum Cascade Lasers” STh1F.3.pdf CLEO, 2014
  • Ghasem Razavipour, Seyed; Dupont, Emmanuel; Wasilewski, Zbig R.; Ban, Dayan” Effects of interface roughness scattering on device performance of indirectly pumped terahertz quantum cascade lasers”, Journal of Physics: Conference Series, Volume 619, Issue 1, article id. 012003 (2015).
  • W. C. H. Choy, P. J. Hughes, B. L. Weiss, E. H. Li, K. Hong and D. Pavlidis, The effect of growth interruption on the properties of InGaAs/InAlAs quantum well structures, Appl. Phys. Lett. 72 (1998) 338-340.
  • K. L. Fry, C. P. Kuo, R. M. Cohen, and G. B. Stringfellow, Photoluminescence of organometallic vapor phase epitaxial GaInAs, Appl. Phys. Lett., 46 (1985) 955–957.
Year 2016, Volume: 29 Issue: 4, 947 - 951, 19.12.2016

Abstract

References

  • M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Illegems, E. Gini, and H. Melchior. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science, 295:5553–5557, 2002.
  • S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist. Above room temperature operation of short wavelength quantum cascade lasers at λ=5.4μm. Appl. Phys. Lett., 86:041109, 2005
  • M. P. Semtsiv, M. Ziegler, S. Dressler, W. T. Masselink, N. Georgiev, T. Dekorsy, and M. Helm. Above room temperature operation of short wavelength (3.8 μm) strain-compensated In0.73Ga0.27As–AlAs quantum cascade lasers. Appl. Phys. Lett., 85:1478–1480, 2004.
  • Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, "Quantum cascade lasers that emit more light than heat," Nat Photon, vol. 4, pp. 99-102, 02//print 2010.
  • R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, "λ ~ 7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature," Optics Express, vol. 19, pp. 17203-17211, 2011/08/29 2011.
  • F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, "Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 19, pp. 1200407-1200407, 2013.
  • N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, M. Razeghi, "Watt level performance of quantum cascade lasers in room temperature continuous wave operation at lambda ~ 3.76 μm," Applied Physics Letters, vol. 97, pp. 131117-3, 09/27/ 2010.
  • X. Q. Lu · D. Y. Xiong · X. Tong, Photoresponse of InGaAs/GaAs multiple-period very-long-wavelength quantum well infrared photodetectors
  • Opt Quant Electron (2015) 47:1429–1436
  • L. Guerra, G, M. Pene, L. D. Pintol, R. Jakomin, R. T. Moura, M. P. Pires, M. H. Degani, M. Z. Maialle and P. L. Souza, “InGaAs/InAIAs quantum well infrared photodetectors for operation in the 1.7 to 3.1 µm wavelength range”, Microelectronics Technology and Devices (SBMicro), 2014 29th Symposium on, 1 – 3 10.1109/SBMicro.2014.6940111
  • Brian R. Bennett, Theresa F. Chick, J. Brad Boos, James G. Champlain, Adrian A. Podpirka, “Strained InGaAs/InAlAs quantum wells for complementary III–V transistors”
  • Journal of Crystal Growth 388 (2014) 92–97.
  • Jung-Hui Tsai, Chia-Hong Huang, Jhih-Jhong Ou-Yang, Yi-Ting Chao, Jia-Cing Jhou, You-Ren Wu, “Performance and direct-coupled FET logic applications of InAlAs/InGaAs co-integrated field-effect transistors by 2-D simulation”, Thin Solid Films 547 (2013) 267–271.
  • N. A. Yuzeeva, A. V. Sorokoumova, R. A. Lunin, L. N. Oveshnikov, G. B. Galiev, E. A. Klimov, D. V. Lavruchin, V. A. Kulbachinskii, “Electron Mobilities and Effective Masses in InGaAs/InAlAs HEMT Structures with High In Content” J. Low Temp. Phys., DOI 10.1007/s10909-016-1589-6
  • Umesh P. Gomes, Yiqiao Chen, Sanjib Kabi, Peter Chow, Dhrubes Biswas, “Quantum well engineering of InAlAs/InGaAs HEMTs for low impact ionization applications”, Current Applied Physics 13 (2013) 487-492
  • I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III--V compound semiconductors and their alloys," Journal of Applied Physics, vol. 89, pp. 5815-5875, 06/01/ 2001.
  • Bandyopadhyay Neelanjan, Modelling, Design, Growth and Characterization of Strain Balanced Quantum Cascade Lasers (3-11μm), grown by Gas Source Molecular Beam Epitaxy, Ph.D Northwestern University, 2015, Publication Number: AAT 3705212
  • S. G. Razavipour, E. Dupont, Z. R. Wasilewski, D. Ban” Effect of Interface Roughness Scattering on performance of Indirectly-Pumped Terahertz Quantum Cascade Lasers” STh1F.3.pdf CLEO, 2014
  • Ghasem Razavipour, Seyed; Dupont, Emmanuel; Wasilewski, Zbig R.; Ban, Dayan” Effects of interface roughness scattering on device performance of indirectly pumped terahertz quantum cascade lasers”, Journal of Physics: Conference Series, Volume 619, Issue 1, article id. 012003 (2015).
  • W. C. H. Choy, P. J. Hughes, B. L. Weiss, E. H. Li, K. Hong and D. Pavlidis, The effect of growth interruption on the properties of InGaAs/InAlAs quantum well structures, Appl. Phys. Lett. 72 (1998) 338-340.
  • K. L. Fry, C. P. Kuo, R. M. Cohen, and G. B. Stringfellow, Photoluminescence of organometallic vapor phase epitaxial GaInAs, Appl. Phys. Lett., 46 (1985) 955–957.
There are 21 citations in total.

Details

Journal Section Physics
Authors

Sezai Elagöz

İlkay Demir

Publication Date December 19, 2016
Published in Issue Year 2016 Volume: 29 Issue: 4

Cite

APA Elagöz, S., & Demir, İ. (2016). GROWTH OF INGAAS/INALAS SUPERLATTICES BY MOCVD AND PRECISE THICKNESS DETERMINATION VIA HRXRD. Gazi University Journal of Science, 29(4), 947-951.
AMA Elagöz S, Demir İ. GROWTH OF INGAAS/INALAS SUPERLATTICES BY MOCVD AND PRECISE THICKNESS DETERMINATION VIA HRXRD. Gazi University Journal of Science. December 2016;29(4):947-951.
Chicago Elagöz, Sezai, and İlkay Demir. “GROWTH OF INGAAS/INALAS SUPERLATTICES BY MOCVD AND PRECISE THICKNESS DETERMINATION VIA HRXRD”. Gazi University Journal of Science 29, no. 4 (December 2016): 947-51.
EndNote Elagöz S, Demir İ (December 1, 2016) GROWTH OF INGAAS/INALAS SUPERLATTICES BY MOCVD AND PRECISE THICKNESS DETERMINATION VIA HRXRD. Gazi University Journal of Science 29 4 947–951.
IEEE S. Elagöz and İ. Demir, “GROWTH OF INGAAS/INALAS SUPERLATTICES BY MOCVD AND PRECISE THICKNESS DETERMINATION VIA HRXRD”, Gazi University Journal of Science, vol. 29, no. 4, pp. 947–951, 2016.
ISNAD Elagöz, Sezai - Demir, İlkay. “GROWTH OF INGAAS/INALAS SUPERLATTICES BY MOCVD AND PRECISE THICKNESS DETERMINATION VIA HRXRD”. Gazi University Journal of Science 29/4 (December 2016), 947-951.
JAMA Elagöz S, Demir İ. GROWTH OF INGAAS/INALAS SUPERLATTICES BY MOCVD AND PRECISE THICKNESS DETERMINATION VIA HRXRD. Gazi University Journal of Science. 2016;29:947–951.
MLA Elagöz, Sezai and İlkay Demir. “GROWTH OF INGAAS/INALAS SUPERLATTICES BY MOCVD AND PRECISE THICKNESS DETERMINATION VIA HRXRD”. Gazi University Journal of Science, vol. 29, no. 4, 2016, pp. 947-51.
Vancouver Elagöz S, Demir İ. GROWTH OF INGAAS/INALAS SUPERLATTICES BY MOCVD AND PRECISE THICKNESS DETERMINATION VIA HRXRD. Gazi University Journal of Science. 2016;29(4):947-51.