BibTex RIS Cite

PARAMETER ESTIMATION FOR PARETO DISTRIBUTION AND TYP E-I I FUZZY LOGIC

Year 2017, Volume: 30 Issue: 1, 251 - 258, 14.03.2017

Abstract

While parameter estimation by the classical methods there are a
number of assumptions need to be satisfied, in the linear regression analysis. One of them is errors are normally distributed. In this work, the case that independent variable has Pareto distribution to be discussed and an algorithm using adaptive networks suggested to parameter estimation where the k which is one of the parameters of the fuzzy membership functions is fuzzy. Also the parameter of fuzzy membership function is fuzzy the estimation process is based on type-II fuzzy logic.

References

  • Aisb ett, J., Rickart, J. T., Morgenthaler, D., Multivariate mo deling and typ e-2 fuzzysets, Fuzzy Sets and Systems 163 (2011) 78-95.
  • Castillo, O., Melin, P. Typ e-2 fuzzylogic: theory and applications, Sipringer, (2008).
  • Cheng, C.B., Lee , E.S., Switching regression analysis by fuzzy adaptive network, Europ en
  • Journal of Op erational Research 128 (2001) 647-668.
  • Civanlar , M.R., Trussell, H.J., Constructing memb ership functions using statistical data
  • fuzzy sets and systems, 18 (1986) 1-13
  • Cramer, H. ,Mathematical metho ds of statistics, Princeton University Press, (1963).
  • Hisao, I., Manabu, N., Fuzzy regression using asymmetric fuzzy co efficients and fuzzied neural
  • networks, Fuzz y Sets and Systems 119 (2001) 273-290.
  • Karnik N.K., Mendel, J.M.,Typ e-2 Fuzz y logic systems, IEEE Transaction on FuzzySystems
  • (1999) 643-658.
  • Karnik N.K., Mendel, J.M., Op erations on typ e-2 fuzzy sets, Fuzzy Sets and Systems 122
  • (2002) 327-348.
  • Mendel, J.M., John, R.I.B. , Typ e-2 fuzzy sets made simple, IEEE Transaction on FuzzySystems 10 (2002) 117-127.
  • Mendel, J. M., Typ e-2 fuzzy sets and systems: A n overview, IEEE Computational Intel ligence
  • Magazine Fabuary (2007) 21-29.
  • Mendel, J. M., Advances in typ e-2 fuzzy sets and systems, Information Sciences 177 (2007)
  • -110.
  • Meyer, P.L., Intro ductory probabili ty and statistical applications, Second Edition, AddisonWesl ey Publishing Company, USA, (1970).
  • Turksen, I.B., Typ e I and Typ e I I fuzzy systems mo delling, Fuzzy Sets and Systems 106
  • (1999) 11-34.
  • Zisheng O., Chi, X., Generalized pareto distribution fit to medical insurance claim data,
  • Appl. Math. J. Chinese Univ. Ser. B. 21 (2006) 21-29.
Year 2017, Volume: 30 Issue: 1, 251 - 258, 14.03.2017

Abstract

References

  • Aisb ett, J., Rickart, J. T., Morgenthaler, D., Multivariate mo deling and typ e-2 fuzzysets, Fuzzy Sets and Systems 163 (2011) 78-95.
  • Castillo, O., Melin, P. Typ e-2 fuzzylogic: theory and applications, Sipringer, (2008).
  • Cheng, C.B., Lee , E.S., Switching regression analysis by fuzzy adaptive network, Europ en
  • Journal of Op erational Research 128 (2001) 647-668.
  • Civanlar , M.R., Trussell, H.J., Constructing memb ership functions using statistical data
  • fuzzy sets and systems, 18 (1986) 1-13
  • Cramer, H. ,Mathematical metho ds of statistics, Princeton University Press, (1963).
  • Hisao, I., Manabu, N., Fuzzy regression using asymmetric fuzzy co efficients and fuzzied neural
  • networks, Fuzz y Sets and Systems 119 (2001) 273-290.
  • Karnik N.K., Mendel, J.M.,Typ e-2 Fuzz y logic systems, IEEE Transaction on FuzzySystems
  • (1999) 643-658.
  • Karnik N.K., Mendel, J.M., Op erations on typ e-2 fuzzy sets, Fuzzy Sets and Systems 122
  • (2002) 327-348.
  • Mendel, J.M., John, R.I.B. , Typ e-2 fuzzy sets made simple, IEEE Transaction on FuzzySystems 10 (2002) 117-127.
  • Mendel, J. M., Typ e-2 fuzzy sets and systems: A n overview, IEEE Computational Intel ligence
  • Magazine Fabuary (2007) 21-29.
  • Mendel, J. M., Advances in typ e-2 fuzzy sets and systems, Information Sciences 177 (2007)
  • -110.
  • Meyer, P.L., Intro ductory probabili ty and statistical applications, Second Edition, AddisonWesl ey Publishing Company, USA, (1970).
  • Turksen, I.B., Typ e I and Typ e I I fuzzy systems mo delling, Fuzzy Sets and Systems 106
  • (1999) 11-34.
  • Zisheng O., Chi, X., Generalized pareto distribution fit to medical insurance claim data,
  • Appl. Math. J. Chinese Univ. Ser. B. 21 (2006) 21-29.
There are 23 citations in total.

Details

Journal Section Statistics
Authors

Kamile Şanlı Kula

Türkan Erbay Dalkılıç This is me

Publication Date March 14, 2017
Published in Issue Year 2017 Volume: 30 Issue: 1

Cite

APA Şanlı Kula, K., & Erbay Dalkılıç, T. (2017). PARAMETER ESTIMATION FOR PARETO DISTRIBUTION AND TYP E-I I FUZZY LOGIC. Gazi University Journal of Science, 30(1), 251-258.
AMA Şanlı Kula K, Erbay Dalkılıç T. PARAMETER ESTIMATION FOR PARETO DISTRIBUTION AND TYP E-I I FUZZY LOGIC. Gazi University Journal of Science. March 2017;30(1):251-258.
Chicago Şanlı Kula, Kamile, and Türkan Erbay Dalkılıç. “PARAMETER ESTIMATION FOR PARETO DISTRIBUTION AND TYP E-I I FUZZY LOGIC”. Gazi University Journal of Science 30, no. 1 (March 2017): 251-58.
EndNote Şanlı Kula K, Erbay Dalkılıç T (March 1, 2017) PARAMETER ESTIMATION FOR PARETO DISTRIBUTION AND TYP E-I I FUZZY LOGIC. Gazi University Journal of Science 30 1 251–258.
IEEE K. Şanlı Kula and T. Erbay Dalkılıç, “PARAMETER ESTIMATION FOR PARETO DISTRIBUTION AND TYP E-I I FUZZY LOGIC”, Gazi University Journal of Science, vol. 30, no. 1, pp. 251–258, 2017.
ISNAD Şanlı Kula, Kamile - Erbay Dalkılıç, Türkan. “PARAMETER ESTIMATION FOR PARETO DISTRIBUTION AND TYP E-I I FUZZY LOGIC”. Gazi University Journal of Science 30/1 (March 2017), 251-258.
JAMA Şanlı Kula K, Erbay Dalkılıç T. PARAMETER ESTIMATION FOR PARETO DISTRIBUTION AND TYP E-I I FUZZY LOGIC. Gazi University Journal of Science. 2017;30:251–258.
MLA Şanlı Kula, Kamile and Türkan Erbay Dalkılıç. “PARAMETER ESTIMATION FOR PARETO DISTRIBUTION AND TYP E-I I FUZZY LOGIC”. Gazi University Journal of Science, vol. 30, no. 1, 2017, pp. 251-8.
Vancouver Şanlı Kula K, Erbay Dalkılıç T. PARAMETER ESTIMATION FOR PARETO DISTRIBUTION AND TYP E-I I FUZZY LOGIC. Gazi University Journal of Science. 2017;30(1):251-8.