Year 2017,
Volume: 30 Issue: 4, 432 - 440, 11.12.2017
Serdal Yazıcı
,
Bayram Çekim
References
- [1] Krech, G., “A note on some positive linear operators associated with the Hermite polynomials’’,
Carpathian J. Math., 32 (1): 71-77, (2016).
- [2] Szász, O., “Generalization of S. Bernstein’s polynomials to the infinite interval’’, J. Res. Nat. Bur.
Stand., 45: 239-245, (1950).
- [3] Sucu, S., İçöz, G.,Varma, S., “On some extensions of Szász opertors including Boas-Buck type
polynomials’’, Abstr. Appl. Anal.,Vol.2012, Article ID 680340: 15 pages, (2012).
- [4] Varma, S., Sucu, S., İçöz, G., “Generalization of Szász operators involving Brenke type
polynomials’’, Comput. Math. Appl., 64(2): 121-127, (2012).
- [5] Varma, S., Taşdelen, F., “Szász type operators involving Charlier polynomials’’, Mathematical and
Computer Modeling, 56: 118-122, (2012).
- [6] Atakut, Ç., Büyükyazici, İ., “Stancu type generalization of the Favard Szász operators’’, Appl. Math.
Lett., 23(12): 1479-1482, (2010).
- [7] Ciupa, A., “A class of integral Favard-Szász type operators’’, Stud. Univ. Babes-Bolyai Math., 40(1):
39-47, (1995).
- [8] Gadzhiev, A. D.,“ The convergence problem for sequence of positive linear operators on unbounded
sets and theorem analogues to that of P.P.Korovkin’’, Sov. Math. Dokl., 15(5): 1436-1453, (1974).
- [9] Stancu, D. D. “Approximation of function by a new class of polynomial operators’’, Rev. Rourn.
Math. Pures et Appl., 13(8): 1173-1194, (1968).
- [10] Gupta, V., Vasishtha, V., Gupta, M. K., “Rate of convergence of the Szász-Kantorovich-Bezier
operators for bounded variation function’’, Publ. Ins. Math.(Beograd)(N.S.), 72: 137-143, (2006).
- [11] Atakut, Ç., İspir, N., “Approximation by modified Szász-Mirakjan operators on weighted spaces’’,
Proc. Indian Acad. Sci. Math., 112: 571-578, (2012).
- [12] Taşdelen, F., Aktaş, R., Altın, A., “A Kantorovich type of Szász operators including Brenke type
polynomials’’, Abstract and Applied Analysis, Vol.2012: 13 pages, (2012).
- [13] Appell, P., Kampe de Feriet, J., Hypergeometriques et Hyperspheriques: Polynomes d’Hermite,
Gauthier-Villars, Paris, 1926.
- [14] DeVore, R. A. and Lorentz, G.G., Constructive Approximation, Springer-Verlag, Berlin, 1993.
- [15] Ditzian, Z. and Totik, V., Moduli of smoothness, Springer-Verlag, New York, 1987.
- [16] Korovkin, P. P., “On convergence of linear positive operators in the space of continuous functions”
(Russian), Doklady Akad. Nauk. SSSR (NS) 90: 961–964, (1953).
- [17] Özarslan, M. A. and Duman, O., “Approximation properties of Poisson integrals for orthogonal
expansions”, Taiwanese J. Math. 12: 1147-1163, (2008).
- [18] Toczek, G. and Wachnicki, E., “On the rate of convergence and the Voronovskaya theorem for the
Poisson integrals for Hermite and Laguerre expansions”, J. Approx. Theory, 116: 113-125, (2002).
A Kantorovich Type Generalization of the Szàsz Operators via Two Variable Hermite Polynomials
Year 2017,
Volume: 30 Issue: 4, 432 - 440, 11.12.2017
Serdal Yazıcı
,
Bayram Çekim
Abstract
The purpose of this paper is to give the Kantorovich generalization of the operators via two
variable Hermite polynomials which are introduced by Krech [1] and to research approximating
features with help of the classical modulus of continuity, the class of Lipschitz functions,
Voronovskaya type asymptotic formula, second modulus of continuity and Peetre's
K -
functional for these operators.
References
- [1] Krech, G., “A note on some positive linear operators associated with the Hermite polynomials’’,
Carpathian J. Math., 32 (1): 71-77, (2016).
- [2] Szász, O., “Generalization of S. Bernstein’s polynomials to the infinite interval’’, J. Res. Nat. Bur.
Stand., 45: 239-245, (1950).
- [3] Sucu, S., İçöz, G.,Varma, S., “On some extensions of Szász opertors including Boas-Buck type
polynomials’’, Abstr. Appl. Anal.,Vol.2012, Article ID 680340: 15 pages, (2012).
- [4] Varma, S., Sucu, S., İçöz, G., “Generalization of Szász operators involving Brenke type
polynomials’’, Comput. Math. Appl., 64(2): 121-127, (2012).
- [5] Varma, S., Taşdelen, F., “Szász type operators involving Charlier polynomials’’, Mathematical and
Computer Modeling, 56: 118-122, (2012).
- [6] Atakut, Ç., Büyükyazici, İ., “Stancu type generalization of the Favard Szász operators’’, Appl. Math.
Lett., 23(12): 1479-1482, (2010).
- [7] Ciupa, A., “A class of integral Favard-Szász type operators’’, Stud. Univ. Babes-Bolyai Math., 40(1):
39-47, (1995).
- [8] Gadzhiev, A. D.,“ The convergence problem for sequence of positive linear operators on unbounded
sets and theorem analogues to that of P.P.Korovkin’’, Sov. Math. Dokl., 15(5): 1436-1453, (1974).
- [9] Stancu, D. D. “Approximation of function by a new class of polynomial operators’’, Rev. Rourn.
Math. Pures et Appl., 13(8): 1173-1194, (1968).
- [10] Gupta, V., Vasishtha, V., Gupta, M. K., “Rate of convergence of the Szász-Kantorovich-Bezier
operators for bounded variation function’’, Publ. Ins. Math.(Beograd)(N.S.), 72: 137-143, (2006).
- [11] Atakut, Ç., İspir, N., “Approximation by modified Szász-Mirakjan operators on weighted spaces’’,
Proc. Indian Acad. Sci. Math., 112: 571-578, (2012).
- [12] Taşdelen, F., Aktaş, R., Altın, A., “A Kantorovich type of Szász operators including Brenke type
polynomials’’, Abstract and Applied Analysis, Vol.2012: 13 pages, (2012).
- [13] Appell, P., Kampe de Feriet, J., Hypergeometriques et Hyperspheriques: Polynomes d’Hermite,
Gauthier-Villars, Paris, 1926.
- [14] DeVore, R. A. and Lorentz, G.G., Constructive Approximation, Springer-Verlag, Berlin, 1993.
- [15] Ditzian, Z. and Totik, V., Moduli of smoothness, Springer-Verlag, New York, 1987.
- [16] Korovkin, P. P., “On convergence of linear positive operators in the space of continuous functions”
(Russian), Doklady Akad. Nauk. SSSR (NS) 90: 961–964, (1953).
- [17] Özarslan, M. A. and Duman, O., “Approximation properties of Poisson integrals for orthogonal
expansions”, Taiwanese J. Math. 12: 1147-1163, (2008).
- [18] Toczek, G. and Wachnicki, E., “On the rate of convergence and the Voronovskaya theorem for the
Poisson integrals for Hermite and Laguerre expansions”, J. Approx. Theory, 116: 113-125, (2002).