Research Article
BibTex RIS Cite
Year 2017, Volume: 30 Issue: 4, 432 - 440, 11.12.2017

Abstract

References

  • [1] Krech, G., “A note on some positive linear operators associated with the Hermite polynomials’’, Carpathian J. Math., 32 (1): 71-77, (2016).
  • [2] Szász, O., “Generalization of S. Bernstein’s polynomials to the infinite interval’’, J. Res. Nat. Bur. Stand., 45: 239-245, (1950).
  • [3] Sucu, S., İçöz, G.,Varma, S., “On some extensions of Szász opertors including Boas-Buck type polynomials’’, Abstr. Appl. Anal.,Vol.2012, Article ID 680340: 15 pages, (2012).
  • [4] Varma, S., Sucu, S., İçöz, G., “Generalization of Szász operators involving Brenke type polynomials’’, Comput. Math. Appl., 64(2): 121-127, (2012).
  • [5] Varma, S., Taşdelen, F., “Szász type operators involving Charlier polynomials’’, Mathematical and Computer Modeling, 56: 118-122, (2012).
  • [6] Atakut, Ç., Büyükyazici, İ., “Stancu type generalization of the Favard Szász operators’’, Appl. Math. Lett., 23(12): 1479-1482, (2010).
  • [7] Ciupa, A., “A class of integral Favard-Szász type operators’’, Stud. Univ. Babes-Bolyai Math., 40(1): 39-47, (1995).
  • [8] Gadzhiev, A. D.,“ The convergence problem for sequence of positive linear operators on unbounded sets and theorem analogues to that of P.P.Korovkin’’, Sov. Math. Dokl., 15(5): 1436-1453, (1974).
  • [9] Stancu, D. D. “Approximation of function by a new class of polynomial operators’’, Rev. Rourn. Math. Pures et Appl., 13(8): 1173-1194, (1968).
  • [10] Gupta, V., Vasishtha, V., Gupta, M. K., “Rate of convergence of the Szász-Kantorovich-Bezier operators for bounded variation function’’, Publ. Ins. Math.(Beograd)(N.S.), 72: 137-143, (2006).
  • [11] Atakut, Ç., İspir, N., “Approximation by modified Szász-Mirakjan operators on weighted spaces’’, Proc. Indian Acad. Sci. Math., 112: 571-578, (2012).
  • [12] Taşdelen, F., Aktaş, R., Altın, A., “A Kantorovich type of Szász operators including Brenke type polynomials’’, Abstract and Applied Analysis, Vol.2012: 13 pages, (2012).
  • [13] Appell, P., Kampe de Feriet, J., Hypergeometriques et Hyperspheriques: Polynomes d’Hermite, Gauthier-Villars, Paris, 1926.
  • [14] DeVore, R. A. and Lorentz, G.G., Constructive Approximation, Springer-Verlag, Berlin, 1993.
  • [15] Ditzian, Z. and Totik, V., Moduli of smoothness, Springer-Verlag, New York, 1987.
  • [16] Korovkin, P. P., “On convergence of linear positive operators in the space of continuous functions” (Russian), Doklady Akad. Nauk. SSSR (NS) 90: 961–964, (1953).
  • [17] Özarslan, M. A. and Duman, O., “Approximation properties of Poisson integrals for orthogonal expansions”, Taiwanese J. Math. 12: 1147-1163, (2008).
  • [18] Toczek, G. and Wachnicki, E., “On the rate of convergence and the Voronovskaya theorem for the Poisson integrals for Hermite and Laguerre expansions”, J. Approx. Theory, 116: 113-125, (2002).

A Kantorovich Type Generalization of the Szàsz Operators via Two Variable Hermite Polynomials

Year 2017, Volume: 30 Issue: 4, 432 - 440, 11.12.2017

Abstract

The purpose of this paper is to give the Kantorovich generalization of the operators via two
variable Hermite polynomials which are introduced by Krech [1] and to research approximating
features with help of the classical modulus of continuity, the class of Lipschitz functions,
Voronovskaya type asymptotic formula, second modulus of continuity and Peetre's
K -
functional for these operators.

References

  • [1] Krech, G., “A note on some positive linear operators associated with the Hermite polynomials’’, Carpathian J. Math., 32 (1): 71-77, (2016).
  • [2] Szász, O., “Generalization of S. Bernstein’s polynomials to the infinite interval’’, J. Res. Nat. Bur. Stand., 45: 239-245, (1950).
  • [3] Sucu, S., İçöz, G.,Varma, S., “On some extensions of Szász opertors including Boas-Buck type polynomials’’, Abstr. Appl. Anal.,Vol.2012, Article ID 680340: 15 pages, (2012).
  • [4] Varma, S., Sucu, S., İçöz, G., “Generalization of Szász operators involving Brenke type polynomials’’, Comput. Math. Appl., 64(2): 121-127, (2012).
  • [5] Varma, S., Taşdelen, F., “Szász type operators involving Charlier polynomials’’, Mathematical and Computer Modeling, 56: 118-122, (2012).
  • [6] Atakut, Ç., Büyükyazici, İ., “Stancu type generalization of the Favard Szász operators’’, Appl. Math. Lett., 23(12): 1479-1482, (2010).
  • [7] Ciupa, A., “A class of integral Favard-Szász type operators’’, Stud. Univ. Babes-Bolyai Math., 40(1): 39-47, (1995).
  • [8] Gadzhiev, A. D.,“ The convergence problem for sequence of positive linear operators on unbounded sets and theorem analogues to that of P.P.Korovkin’’, Sov. Math. Dokl., 15(5): 1436-1453, (1974).
  • [9] Stancu, D. D. “Approximation of function by a new class of polynomial operators’’, Rev. Rourn. Math. Pures et Appl., 13(8): 1173-1194, (1968).
  • [10] Gupta, V., Vasishtha, V., Gupta, M. K., “Rate of convergence of the Szász-Kantorovich-Bezier operators for bounded variation function’’, Publ. Ins. Math.(Beograd)(N.S.), 72: 137-143, (2006).
  • [11] Atakut, Ç., İspir, N., “Approximation by modified Szász-Mirakjan operators on weighted spaces’’, Proc. Indian Acad. Sci. Math., 112: 571-578, (2012).
  • [12] Taşdelen, F., Aktaş, R., Altın, A., “A Kantorovich type of Szász operators including Brenke type polynomials’’, Abstract and Applied Analysis, Vol.2012: 13 pages, (2012).
  • [13] Appell, P., Kampe de Feriet, J., Hypergeometriques et Hyperspheriques: Polynomes d’Hermite, Gauthier-Villars, Paris, 1926.
  • [14] DeVore, R. A. and Lorentz, G.G., Constructive Approximation, Springer-Verlag, Berlin, 1993.
  • [15] Ditzian, Z. and Totik, V., Moduli of smoothness, Springer-Verlag, New York, 1987.
  • [16] Korovkin, P. P., “On convergence of linear positive operators in the space of continuous functions” (Russian), Doklady Akad. Nauk. SSSR (NS) 90: 961–964, (1953).
  • [17] Özarslan, M. A. and Duman, O., “Approximation properties of Poisson integrals for orthogonal expansions”, Taiwanese J. Math. 12: 1147-1163, (2008).
  • [18] Toczek, G. and Wachnicki, E., “On the rate of convergence and the Voronovskaya theorem for the Poisson integrals for Hermite and Laguerre expansions”, J. Approx. Theory, 116: 113-125, (2002).
There are 18 citations in total.

Details

Journal Section Mathematics
Authors

Serdal Yazıcı

Bayram Çekim

Publication Date December 11, 2017
Published in Issue Year 2017 Volume: 30 Issue: 4

Cite

APA Yazıcı, S., & Çekim, B. (2017). A Kantorovich Type Generalization of the Szàsz Operators via Two Variable Hermite Polynomials. Gazi University Journal of Science, 30(4), 432-440.
AMA Yazıcı S, Çekim B. A Kantorovich Type Generalization of the Szàsz Operators via Two Variable Hermite Polynomials. Gazi University Journal of Science. December 2017;30(4):432-440.
Chicago Yazıcı, Serdal, and Bayram Çekim. “A Kantorovich Type Generalization of the Szàsz Operators via Two Variable Hermite Polynomials”. Gazi University Journal of Science 30, no. 4 (December 2017): 432-40.
EndNote Yazıcı S, Çekim B (December 1, 2017) A Kantorovich Type Generalization of the Szàsz Operators via Two Variable Hermite Polynomials. Gazi University Journal of Science 30 4 432–440.
IEEE S. Yazıcı and B. Çekim, “A Kantorovich Type Generalization of the Szàsz Operators via Two Variable Hermite Polynomials”, Gazi University Journal of Science, vol. 30, no. 4, pp. 432–440, 2017.
ISNAD Yazıcı, Serdal - Çekim, Bayram. “A Kantorovich Type Generalization of the Szàsz Operators via Two Variable Hermite Polynomials”. Gazi University Journal of Science 30/4 (December 2017), 432-440.
JAMA Yazıcı S, Çekim B. A Kantorovich Type Generalization of the Szàsz Operators via Two Variable Hermite Polynomials. Gazi University Journal of Science. 2017;30:432–440.
MLA Yazıcı, Serdal and Bayram Çekim. “A Kantorovich Type Generalization of the Szàsz Operators via Two Variable Hermite Polynomials”. Gazi University Journal of Science, vol. 30, no. 4, 2017, pp. 432-40.
Vancouver Yazıcı S, Çekim B. A Kantorovich Type Generalization of the Szàsz Operators via Two Variable Hermite Polynomials. Gazi University Journal of Science. 2017;30(4):432-40.