Research Article
BibTex RIS Cite
Year 2018, Volume: 31 Issue: 4, 1033 - 1046, 01.12.2018

Abstract

References

  • Bayrakcı Özdingiş, A. G., “Second generation bioethanol production by using water hyacinth and other lignocellulosic residues,” Phd Thesis, Ege University Institute of Solar Energy, Izmir, Turkey, (2017).
  • Saddler J. N. and Chan, M. K. H., “Optimization of Clostridium thermocellum growth on cellulose and pretreated wood substrates,” Eur J Appl Microbiol, 16(2-3):99-104pp., (1982).
  • Kasavi, C., “A system based rational approach to improve first and second generation bioethanol production by Saccharomyces cerevisiae,” PhD Thesis, Boğaziçi University Chemical Engineering, İstanbul, Turkey, (2013).
  • Arora, R., Behera, S., and Kumar, S., “Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective,” Renew Sust Energ Rev, 51:699-717pp. (2015).
  • Goncalves, F. A., Ruiz, H. A., dos Santos, E. S., Teixeira, J. A., de Macedo, G. R., “Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept,” Renew Energ, 94:353-365pp., (2016).
  • Sills, D. and Gossett, J. M., “Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass,” Bioresource Technol, 102:1389-1398pp., (2011).
  • Xu, C., Qin, Y., Li, Y., Ji, Y., Huang, J., Song, H., and Xu, J., “Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol,” Bioresource Technol, 101(24):9560–9569pp., (2010).
  • Li, J., Zhou, P., Liu, H., Wu, K., Kang, X., Gong, Y., Xiao, W., Lin, J., and Liu, Z., “A comparison of fermentation strategies for cellulosic ethanol production from NaOH-soaked sugarcane bagasse at high solid loading with decreased cellulase loading,” Ind Crop Prod, 62:446–452pp., (2014).
  • Richard, P., Verho, R., Putkonen, M., Londesborough, J., and Penttilä, M, “Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway”, FEMS Yeast Res, 3(2):185-189pp., (2003).
  • Becker, J. and Boles, E., “A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol,” Appl Environ Microb, 69(7):4144-4150pp., (2003).
  • Brown, S. D., Guss, A. M., Karpinets, T. V., Parks, J. M., Smolin, N., Yang, S., Land, M. L., Klingeman, D. M., Bhandiwad, A., Rodriguez, M., et al., “Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum,” P Natl Acad Sci-Biol, 108(33):13752-13757pp., (2011).
  • Yang, S., Giannone, R. J., Dice, L., Yang, Z. K., Engle, N. G., Tschaplinski, T. J., Hettich, R. L., and Brown, S. D., “Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress,” BMC Genomics, 13:336p., (2012).
  • Zhu, X., Cui, J., Feng, Y., Fa, Y., Zhang, J., and Cui, Q., “Metabolic adaption of ethanol-tolerant Clostridium thermocellum,” PLoS ONE 8:7p., (2013).

Microorganism and Pretreatment Effect on Lignocellulosic Bioethanol Production

Year 2018, Volume: 31 Issue: 4, 1033 - 1046, 01.12.2018

Abstract

The effects of pretreatments applied to raw materials and microorganism
selection in lignocellulosic bioethanol production were investigated. It has
been found that the yield of enzymatic pretreatment process applied after the
chemical pretreatment is about 4 times higher than that only chemical.
Enzymatic pretreatment used process yield is 3.5 times higher than that
chemical pretreatment. When the microorganism ethanol production yield values
of Saccharomyces cerevisiae and Pichia stipitis were examined, it was
found that S.cerevisiae was superior
to P.stipitis in chemical pretreated
reactors (about 1.7 times higher) while P.
stipitis
yield was higher about 1.2 times in enzymatic pretreated
reactors. When the reactors which have been pretreated with both chemical and
enzymatic hydrolysis and P. stipitis
and S. cerevisiae used separately were
examined, it was observed that there was not a great difference in terms of
ethanol production yield. C. thermocellum’s
ethanol yield was found about 3 times lower than the S. cerevisiae and P.
stipitis
.
According to the obtained data, it was seen that S. cerevisiae could produce ethanol with
higher efficiency than P. stipitis.
At the same time, the difficulty of C.
thermocellum
’s production conditions, high energy demand and high risk of
contamination, and low ethanol production yield, it is thought that it can only
be used in the research phase for now. But in particular, by investigating
extracellular cellulase enzyme system of C.
thermocellum
, genetic modifications are predicted to play an important role
in the future in the second generation bioethanol production process.

References

  • Bayrakcı Özdingiş, A. G., “Second generation bioethanol production by using water hyacinth and other lignocellulosic residues,” Phd Thesis, Ege University Institute of Solar Energy, Izmir, Turkey, (2017).
  • Saddler J. N. and Chan, M. K. H., “Optimization of Clostridium thermocellum growth on cellulose and pretreated wood substrates,” Eur J Appl Microbiol, 16(2-3):99-104pp., (1982).
  • Kasavi, C., “A system based rational approach to improve first and second generation bioethanol production by Saccharomyces cerevisiae,” PhD Thesis, Boğaziçi University Chemical Engineering, İstanbul, Turkey, (2013).
  • Arora, R., Behera, S., and Kumar, S., “Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective,” Renew Sust Energ Rev, 51:699-717pp. (2015).
  • Goncalves, F. A., Ruiz, H. A., dos Santos, E. S., Teixeira, J. A., de Macedo, G. R., “Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept,” Renew Energ, 94:353-365pp., (2016).
  • Sills, D. and Gossett, J. M., “Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass,” Bioresource Technol, 102:1389-1398pp., (2011).
  • Xu, C., Qin, Y., Li, Y., Ji, Y., Huang, J., Song, H., and Xu, J., “Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol,” Bioresource Technol, 101(24):9560–9569pp., (2010).
  • Li, J., Zhou, P., Liu, H., Wu, K., Kang, X., Gong, Y., Xiao, W., Lin, J., and Liu, Z., “A comparison of fermentation strategies for cellulosic ethanol production from NaOH-soaked sugarcane bagasse at high solid loading with decreased cellulase loading,” Ind Crop Prod, 62:446–452pp., (2014).
  • Richard, P., Verho, R., Putkonen, M., Londesborough, J., and Penttilä, M, “Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway”, FEMS Yeast Res, 3(2):185-189pp., (2003).
  • Becker, J. and Boles, E., “A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol,” Appl Environ Microb, 69(7):4144-4150pp., (2003).
  • Brown, S. D., Guss, A. M., Karpinets, T. V., Parks, J. M., Smolin, N., Yang, S., Land, M. L., Klingeman, D. M., Bhandiwad, A., Rodriguez, M., et al., “Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum,” P Natl Acad Sci-Biol, 108(33):13752-13757pp., (2011).
  • Yang, S., Giannone, R. J., Dice, L., Yang, Z. K., Engle, N. G., Tschaplinski, T. J., Hettich, R. L., and Brown, S. D., “Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress,” BMC Genomics, 13:336p., (2012).
  • Zhu, X., Cui, J., Feng, Y., Fa, Y., Zhang, J., and Cui, Q., “Metabolic adaption of ethanol-tolerant Clostridium thermocellum,” PLoS ONE 8:7p., (2013).
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Biology
Authors

Asiye Gül Bayrakcı Ozdıngıs 0000-0002-7553-8927

Gunnur Kocar

Publication Date December 1, 2018
Published in Issue Year 2018 Volume: 31 Issue: 4

Cite

APA Bayrakcı Ozdıngıs, A. G., & Kocar, G. (2018). Microorganism and Pretreatment Effect on Lignocellulosic Bioethanol Production. Gazi University Journal of Science, 31(4), 1033-1046.
AMA Bayrakcı Ozdıngıs AG, Kocar G. Microorganism and Pretreatment Effect on Lignocellulosic Bioethanol Production. Gazi University Journal of Science. December 2018;31(4):1033-1046.
Chicago Bayrakcı Ozdıngıs, Asiye Gül, and Gunnur Kocar. “Microorganism and Pretreatment Effect on Lignocellulosic Bioethanol Production”. Gazi University Journal of Science 31, no. 4 (December 2018): 1033-46.
EndNote Bayrakcı Ozdıngıs AG, Kocar G (December 1, 2018) Microorganism and Pretreatment Effect on Lignocellulosic Bioethanol Production. Gazi University Journal of Science 31 4 1033–1046.
IEEE A. G. Bayrakcı Ozdıngıs and G. Kocar, “Microorganism and Pretreatment Effect on Lignocellulosic Bioethanol Production”, Gazi University Journal of Science, vol. 31, no. 4, pp. 1033–1046, 2018.
ISNAD Bayrakcı Ozdıngıs, Asiye Gül - Kocar, Gunnur. “Microorganism and Pretreatment Effect on Lignocellulosic Bioethanol Production”. Gazi University Journal of Science 31/4 (December 2018), 1033-1046.
JAMA Bayrakcı Ozdıngıs AG, Kocar G. Microorganism and Pretreatment Effect on Lignocellulosic Bioethanol Production. Gazi University Journal of Science. 2018;31:1033–1046.
MLA Bayrakcı Ozdıngıs, Asiye Gül and Gunnur Kocar. “Microorganism and Pretreatment Effect on Lignocellulosic Bioethanol Production”. Gazi University Journal of Science, vol. 31, no. 4, 2018, pp. 1033-46.
Vancouver Bayrakcı Ozdıngıs AG, Kocar G. Microorganism and Pretreatment Effect on Lignocellulosic Bioethanol Production. Gazi University Journal of Science. 2018;31(4):1033-46.