Research Article
BibTex RIS Cite
Year 2019, Volume: 32 Issue: 1, 78 - 89, 01.03.2019

Abstract

References

  • Zhu, J., Lines B.M., Ganton, M.D., Kerr, M.A. and Workentin, M.S., “Efficient synthesis of isoxazolidine tethered monolayer-protected gold nanoparticles (MPGNs) via 1,3-dipolar cycloadditions under high-pressure conditions”, J. Org. Chem., 73(3): 1099-1105, (2008).
  • Karthikeyan, K., Perumal, P.T., Etti, S. and Shanmugam, G., “Diastereoselective syntheses of pyrazolyl via 1,3-dipolar cycloaddition”, Tetrahedron, 63(43): 10581-10586, (2007).
  • Dondas, H.A., Cummins, J.E., Grigg, R. and Thornton, P.M., “X=Y–ZH Systems as potential 1,3-dipoles. Part 53: Sequential nucleophilic ring opening-1,3-dipolar cycloaddition reactions of Z-oxime anions with aziridines and dipolarophiles”, Tetrahedron, 57(37): 7951-7964, (2001).
  • Casuscelli, F., Chiaccho, U., Rescifina, A., Romeo, R., Romeo, G., Tommasini, S. and Uccella, N., “Ring-opening of isoxazolidine nucleus: Competitive formation of α,β-enones and tetrahydro-1,3-oxazines”, Tetrahedron, 51(10): 2979-2990, (1995).
  • Damodiran, M., Sivakumar, P.M., Senthil Kumar, R., Muralidharan, D., Kumar, B.V.N.P., Doble, M. and Perumal, P.T., “Antibacterial activity, quantitative structure–activity relationship and diastereoselective synthesis of ısoxazolidine derivatives via 1,3-dipolar cycloaddition of D-glucose derived nitrone with olefin”, Chem. Biol. Drug. Des., 74(5): 494-506, (2009).
  • Yin, Z., Zhang, J., Wu, J., Liu, C., Sioson, K., Devany, M., Hu, C. and Zheng, S., “Double hetero-Michael addition of N substituted hydroxylamines to quinone monoketals: synthesis of bridged isoxazolidines”, Org. Lett.,15(4): 3534-3537, (2013).
  • Ali, A.S., Khan, J.H. and Wazeer, M.I.M., “The regiochemistry and stereochemistry of 1,3-dipolar cycloaddition of cyclic nitrones”, Tetrahedron, 44(18): 5911-5920, (1998).
  • Jäger, V. and Müller, I., “Synthesis of amino sugars via isoxazolines: Nitrile oxide-furan adducts as key intermediates in the isoxazoline route towards novel amino sugar derivatives”, Tetrahedron, 41(17): 3519-3528, (1985).
  • Merino, P., Franco, S., Merchan, F.L. and Tejero, T., “Asymmetric synthesis of an isoxazolidine nucleoside analog of thymine polyoxin C”, Tetrahedron Lett., 39(35): 6411-6414, (1988).
  • Nora, G.P., Miller, M.J. and Möllmann, U., “The synthesis and in vitro testing of structurally novel antibiotics derived from acylnitroso Diels–Alder adducts”, Bioorg. Med. Chem. Lett., 16(15): 3966-3970, (2006).
  • Litvinovskaya, R.P., Koval, N.V. and Khripach, V.A., “Synthesis of modified vitamin D precursors”, Chem. Hetero. Comp., 36(2): 190-194, (2000).
  • Hanselmann, R., Zhou, J., Ma, P. and Confalone, P.N., “Synthesis of cyclic and acyclic β-amino acids via chelation-controlled 1,3-dipolar cycloaddition”, J. Org. Chem., 68(22): 8739-8741, (2003).
  • Chiacchio, U., Balestrieri, E., Macchi, B., Iannazzo, D., Piperino, A., Rescifina, A., Romeo, R., Saglimbeni, M., Sciortino, M.T., Valveri, V., Mastino, A. and Romeo, G., “Synthesis of phosphonated carbocyclic 2’-oxa-3’-aza-nucleosides:  Novel inhibitors of reverse transcriptase”, J. Med. Chem., 48(5): 1389-1394, (2005).
  • Palmer, G.C., Ordy, M.J., Simmons. R.D., Strand, J.C., Radov, L.A., Mullen, G.B., Kinsolving, C.R., St Giorgiev, V., Mitchell, J.T. and Allen, S.D., “Selection of orally active antifungal agents from 3,5-substituted isoxazolidine derivatives based on acute efficacy-safety profiles”, Antimicrob. Agents Chemother., 33(6):895-905, (1989).
  • Kumar, K.R.R., Mallesha, H. and Basappa Rangappa, K.S., “Synthesis of novel isoxazolidine derivatives and studies for their antifungal properties”, Eur. J. Med. Chem., 38(6): 613-619, (2003).
  • Zhao, C. and Casida, J.E., “Insect γ-aminobutyric acid receptors and isoxazoline insecticides: Toxicological profiles relative to the binding sites of [3H]fluralaner, [3H]-4′-ethynyl-4-n-propylbicycloorthobenzoate, and [3H]avermectin”, J. Agric. Food. Chem., 62(5): 1019-1024, (2014).
  • Rakesh, D.S., Lee, R.B., Tangallapally, R.P. and Lee, R.E., “Synthesis, optimization and structure–activity relationships of 3,5-disubstituted isoxazolines as new anti-tuberculosis agents”, Eur. J. Med. Chem., 44(2): 460-472, (2009).
  • Habeeb, A.G., Rao, P.P.N. and Knaus, E.E., “Design and synthesis of 4,5-diphenyl-4-isoxazolines:  Novel inhibitors of cyclooxygenase-2 with analgesic and antiinflammatory activity”, J. Med. Chem., 44(18): 2921-2927, (2001).
  • Mondal, P., Jana, S., Balaji, A., Ramakrishna, R. and Kanthal, L.K,. “Synthesis of some new isoxazoline derivatives of chalconised indoline 2-one as a potential analgesic, antibacterial and anthelmintic agents”, J. Young Pharm., 4(1): 38-41, (2012).
  • Pinto, D.J.P., Smallheer, J.M., Cheney, D.L., Knabb, R.M. and Wexler, R.R., “Factor Xa inhibitors: Next-generation antithrombotic agents”, J. Med. Chem., 53(17): 6243-6274, (2010).
  • Giofrè, S.V., Romeo, R., Carnovale, C., Mancuso, R., Cirmi, S., Navarra, M., Garozzo, A. and Chiacchio, M.A., “Synthesis and biological properties of 5-(1h-1,2,3-triazol-4-yl)isoxazolidines: A new class of C-nucleosides”, Molecules, 20(4): 5260-5275, (2015).
  • Büyükgüngör, O., Yavuz, S., Odabaşoğlu, M., Özkan, H., Pamir, Ö. and Yıldırır, Y., “Dimethyl trans-3-(4-bromo¬phen¬yl)-2-methyl¬isoxazolidine-4,5-dicarboxyl¬ate”, Acta Cryst., E65(Pt 9): o2207, (2009).
  • Andrade, M., Barros, M.T. and Pinto, R.C., “Exploiting microwave-assisted neat procedures: synthesis of N-aryl and N-alkylnitrones and their cycloaddition en route for isoxazolidines”, Tetrahedron, 64(46): 10521-10530, (2008).
  • Colacino, E., Nun, P., Colacino, F.M., Martinez, J. and Lamaty, F., “Solvent-free synthesis of nitrones in a ball-mill”, Tetrahedron, 64(23): 5569-5576, (2008).
  • Wagner, G. and Garland, T., “Synthesis of 5-trichloromethyl-Δ4-1,2,4-oxadiazolines and their rearrangement into formamidine derivatives”, Tetrahedron Lett., 49(22): 3596-3599, (2008).
  • Yijima, C., Tsujimoto, T., Suda, K. and Yamauchi, M., “13C and 1H NMR of α-arylnitrones. Substituent effects on the α-position of α-(p-substituted phenyl)nitrones”, Bull. Chem. Soc. Jpn., 59(7): 2165-2170, (1986).
  • Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically approved standard, 7th ed. M7-A7, (2006).
  • Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts approved standard, 3rd ed. M27-A3, vol 0, no 0, Replaces M27-A2, vol 22, no 15, (2007).
  • Iannazzo, D., Brunaccini, E., Giofre, S., Piperno, A., Romeo, G., Ronsisvalle, S., Chiacchio, M.A., Lanza, G. and Chiacchio, U., “Competitive formation of β-enaminones and 3-amino-2(5H)-furanones from the isoxazolidine system: a combined synthetic and quantum chemical study”, Eur. J. Org. Chem., 2010(30):5897-5905, (2010).
  • Alavi Nikje, M.M., Bigdeli, M.A. and Imanieh, H. A., “Facile and new method for the synthesis of α-aryl-N-methylnitrones in solvent-free media using silica gel-NaOH”, Phosphorus Sulfur Silicon Relat. Elem.,179(8):1465-1468, (2004).
  • Yavuz, S., Ozkan, H., Colak, N. and Yildirir, Y., “Fast method for synthesis of alkyl and aryl-N-methylnitrones”, Molecules,16(8):6677-83, (2011).
  • Marvaniya, H.M., Modi, K.N.and Sen, D.J., “Greener reactions under solvent free conditions”, Int. J. Drug and Res., 3(2):34-43, (2011).
  • Zangade, S.B., Mokle, S.S., Shinde, A.T. and Vibhute, Y.B., “An atom efficient, green synthesis of 2-pyrazoline derivatives under solvent-free conditions using grinding technique”, Green Chem. Lett. Rev., 6(2): 123-127, (2013).

Synthesis of Some Novel Isoxazolidine Derivatives via 1,3-Dipolar Cycloaddition and Their Biological Evaluation

Year 2019, Volume: 32 Issue: 1, 78 - 89, 01.03.2019

Abstract

A series of novel substituted isoxazolidine
derivatives were synthesized by 1,3-dipolar cycloaddition reaction. The
structures of the synthesized compounds were characterized using spectroscopic
methods. All the synthesized compounds were screened for their antibacterial
activities against Gram-positive and Gram-negative bacteria and for their
antifungal activities against a yeast strain. The results show that all the
synthesized compounds displayed significant activity against
S. epidermis, M. luteus, B. cereus, B. abortus and C. albicans when compared to standard drugs. 

References

  • Zhu, J., Lines B.M., Ganton, M.D., Kerr, M.A. and Workentin, M.S., “Efficient synthesis of isoxazolidine tethered monolayer-protected gold nanoparticles (MPGNs) via 1,3-dipolar cycloadditions under high-pressure conditions”, J. Org. Chem., 73(3): 1099-1105, (2008).
  • Karthikeyan, K., Perumal, P.T., Etti, S. and Shanmugam, G., “Diastereoselective syntheses of pyrazolyl via 1,3-dipolar cycloaddition”, Tetrahedron, 63(43): 10581-10586, (2007).
  • Dondas, H.A., Cummins, J.E., Grigg, R. and Thornton, P.M., “X=Y–ZH Systems as potential 1,3-dipoles. Part 53: Sequential nucleophilic ring opening-1,3-dipolar cycloaddition reactions of Z-oxime anions with aziridines and dipolarophiles”, Tetrahedron, 57(37): 7951-7964, (2001).
  • Casuscelli, F., Chiaccho, U., Rescifina, A., Romeo, R., Romeo, G., Tommasini, S. and Uccella, N., “Ring-opening of isoxazolidine nucleus: Competitive formation of α,β-enones and tetrahydro-1,3-oxazines”, Tetrahedron, 51(10): 2979-2990, (1995).
  • Damodiran, M., Sivakumar, P.M., Senthil Kumar, R., Muralidharan, D., Kumar, B.V.N.P., Doble, M. and Perumal, P.T., “Antibacterial activity, quantitative structure–activity relationship and diastereoselective synthesis of ısoxazolidine derivatives via 1,3-dipolar cycloaddition of D-glucose derived nitrone with olefin”, Chem. Biol. Drug. Des., 74(5): 494-506, (2009).
  • Yin, Z., Zhang, J., Wu, J., Liu, C., Sioson, K., Devany, M., Hu, C. and Zheng, S., “Double hetero-Michael addition of N substituted hydroxylamines to quinone monoketals: synthesis of bridged isoxazolidines”, Org. Lett.,15(4): 3534-3537, (2013).
  • Ali, A.S., Khan, J.H. and Wazeer, M.I.M., “The regiochemistry and stereochemistry of 1,3-dipolar cycloaddition of cyclic nitrones”, Tetrahedron, 44(18): 5911-5920, (1998).
  • Jäger, V. and Müller, I., “Synthesis of amino sugars via isoxazolines: Nitrile oxide-furan adducts as key intermediates in the isoxazoline route towards novel amino sugar derivatives”, Tetrahedron, 41(17): 3519-3528, (1985).
  • Merino, P., Franco, S., Merchan, F.L. and Tejero, T., “Asymmetric synthesis of an isoxazolidine nucleoside analog of thymine polyoxin C”, Tetrahedron Lett., 39(35): 6411-6414, (1988).
  • Nora, G.P., Miller, M.J. and Möllmann, U., “The synthesis and in vitro testing of structurally novel antibiotics derived from acylnitroso Diels–Alder adducts”, Bioorg. Med. Chem. Lett., 16(15): 3966-3970, (2006).
  • Litvinovskaya, R.P., Koval, N.V. and Khripach, V.A., “Synthesis of modified vitamin D precursors”, Chem. Hetero. Comp., 36(2): 190-194, (2000).
  • Hanselmann, R., Zhou, J., Ma, P. and Confalone, P.N., “Synthesis of cyclic and acyclic β-amino acids via chelation-controlled 1,3-dipolar cycloaddition”, J. Org. Chem., 68(22): 8739-8741, (2003).
  • Chiacchio, U., Balestrieri, E., Macchi, B., Iannazzo, D., Piperino, A., Rescifina, A., Romeo, R., Saglimbeni, M., Sciortino, M.T., Valveri, V., Mastino, A. and Romeo, G., “Synthesis of phosphonated carbocyclic 2’-oxa-3’-aza-nucleosides:  Novel inhibitors of reverse transcriptase”, J. Med. Chem., 48(5): 1389-1394, (2005).
  • Palmer, G.C., Ordy, M.J., Simmons. R.D., Strand, J.C., Radov, L.A., Mullen, G.B., Kinsolving, C.R., St Giorgiev, V., Mitchell, J.T. and Allen, S.D., “Selection of orally active antifungal agents from 3,5-substituted isoxazolidine derivatives based on acute efficacy-safety profiles”, Antimicrob. Agents Chemother., 33(6):895-905, (1989).
  • Kumar, K.R.R., Mallesha, H. and Basappa Rangappa, K.S., “Synthesis of novel isoxazolidine derivatives and studies for their antifungal properties”, Eur. J. Med. Chem., 38(6): 613-619, (2003).
  • Zhao, C. and Casida, J.E., “Insect γ-aminobutyric acid receptors and isoxazoline insecticides: Toxicological profiles relative to the binding sites of [3H]fluralaner, [3H]-4′-ethynyl-4-n-propylbicycloorthobenzoate, and [3H]avermectin”, J. Agric. Food. Chem., 62(5): 1019-1024, (2014).
  • Rakesh, D.S., Lee, R.B., Tangallapally, R.P. and Lee, R.E., “Synthesis, optimization and structure–activity relationships of 3,5-disubstituted isoxazolines as new anti-tuberculosis agents”, Eur. J. Med. Chem., 44(2): 460-472, (2009).
  • Habeeb, A.G., Rao, P.P.N. and Knaus, E.E., “Design and synthesis of 4,5-diphenyl-4-isoxazolines:  Novel inhibitors of cyclooxygenase-2 with analgesic and antiinflammatory activity”, J. Med. Chem., 44(18): 2921-2927, (2001).
  • Mondal, P., Jana, S., Balaji, A., Ramakrishna, R. and Kanthal, L.K,. “Synthesis of some new isoxazoline derivatives of chalconised indoline 2-one as a potential analgesic, antibacterial and anthelmintic agents”, J. Young Pharm., 4(1): 38-41, (2012).
  • Pinto, D.J.P., Smallheer, J.M., Cheney, D.L., Knabb, R.M. and Wexler, R.R., “Factor Xa inhibitors: Next-generation antithrombotic agents”, J. Med. Chem., 53(17): 6243-6274, (2010).
  • Giofrè, S.V., Romeo, R., Carnovale, C., Mancuso, R., Cirmi, S., Navarra, M., Garozzo, A. and Chiacchio, M.A., “Synthesis and biological properties of 5-(1h-1,2,3-triazol-4-yl)isoxazolidines: A new class of C-nucleosides”, Molecules, 20(4): 5260-5275, (2015).
  • Büyükgüngör, O., Yavuz, S., Odabaşoğlu, M., Özkan, H., Pamir, Ö. and Yıldırır, Y., “Dimethyl trans-3-(4-bromo¬phen¬yl)-2-methyl¬isoxazolidine-4,5-dicarboxyl¬ate”, Acta Cryst., E65(Pt 9): o2207, (2009).
  • Andrade, M., Barros, M.T. and Pinto, R.C., “Exploiting microwave-assisted neat procedures: synthesis of N-aryl and N-alkylnitrones and their cycloaddition en route for isoxazolidines”, Tetrahedron, 64(46): 10521-10530, (2008).
  • Colacino, E., Nun, P., Colacino, F.M., Martinez, J. and Lamaty, F., “Solvent-free synthesis of nitrones in a ball-mill”, Tetrahedron, 64(23): 5569-5576, (2008).
  • Wagner, G. and Garland, T., “Synthesis of 5-trichloromethyl-Δ4-1,2,4-oxadiazolines and their rearrangement into formamidine derivatives”, Tetrahedron Lett., 49(22): 3596-3599, (2008).
  • Yijima, C., Tsujimoto, T., Suda, K. and Yamauchi, M., “13C and 1H NMR of α-arylnitrones. Substituent effects on the α-position of α-(p-substituted phenyl)nitrones”, Bull. Chem. Soc. Jpn., 59(7): 2165-2170, (1986).
  • Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically approved standard, 7th ed. M7-A7, (2006).
  • Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts approved standard, 3rd ed. M27-A3, vol 0, no 0, Replaces M27-A2, vol 22, no 15, (2007).
  • Iannazzo, D., Brunaccini, E., Giofre, S., Piperno, A., Romeo, G., Ronsisvalle, S., Chiacchio, M.A., Lanza, G. and Chiacchio, U., “Competitive formation of β-enaminones and 3-amino-2(5H)-furanones from the isoxazolidine system: a combined synthetic and quantum chemical study”, Eur. J. Org. Chem., 2010(30):5897-5905, (2010).
  • Alavi Nikje, M.M., Bigdeli, M.A. and Imanieh, H. A., “Facile and new method for the synthesis of α-aryl-N-methylnitrones in solvent-free media using silica gel-NaOH”, Phosphorus Sulfur Silicon Relat. Elem.,179(8):1465-1468, (2004).
  • Yavuz, S., Ozkan, H., Colak, N. and Yildirir, Y., “Fast method for synthesis of alkyl and aryl-N-methylnitrones”, Molecules,16(8):6677-83, (2011).
  • Marvaniya, H.M., Modi, K.N.and Sen, D.J., “Greener reactions under solvent free conditions”, Int. J. Drug and Res., 3(2):34-43, (2011).
  • Zangade, S.B., Mokle, S.S., Shinde, A.T. and Vibhute, Y.B., “An atom efficient, green synthesis of 2-pyrazoline derivatives under solvent-free conditions using grinding technique”, Green Chem. Lett. Rev., 6(2): 123-127, (2013).
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Biology
Authors

Volkan Yanmaz This is me

Ali Dıslı

Serkan Yavuz

Hatice Ogutcu

Gulay Dılek

Publication Date March 1, 2019
Published in Issue Year 2019 Volume: 32 Issue: 1

Cite

APA Yanmaz, V., Dıslı, A., Yavuz, S., Ogutcu, H., et al. (2019). Synthesis of Some Novel Isoxazolidine Derivatives via 1,3-Dipolar Cycloaddition and Their Biological Evaluation. Gazi University Journal of Science, 32(1), 78-89.
AMA Yanmaz V, Dıslı A, Yavuz S, Ogutcu H, Dılek G. Synthesis of Some Novel Isoxazolidine Derivatives via 1,3-Dipolar Cycloaddition and Their Biological Evaluation. Gazi University Journal of Science. March 2019;32(1):78-89.
Chicago Yanmaz, Volkan, Ali Dıslı, Serkan Yavuz, Hatice Ogutcu, and Gulay Dılek. “Synthesis of Some Novel Isoxazolidine Derivatives via 1,3-Dipolar Cycloaddition and Their Biological Evaluation”. Gazi University Journal of Science 32, no. 1 (March 2019): 78-89.
EndNote Yanmaz V, Dıslı A, Yavuz S, Ogutcu H, Dılek G (March 1, 2019) Synthesis of Some Novel Isoxazolidine Derivatives via 1,3-Dipolar Cycloaddition and Their Biological Evaluation. Gazi University Journal of Science 32 1 78–89.
IEEE V. Yanmaz, A. Dıslı, S. Yavuz, H. Ogutcu, and G. Dılek, “Synthesis of Some Novel Isoxazolidine Derivatives via 1,3-Dipolar Cycloaddition and Their Biological Evaluation”, Gazi University Journal of Science, vol. 32, no. 1, pp. 78–89, 2019.
ISNAD Yanmaz, Volkan et al. “Synthesis of Some Novel Isoxazolidine Derivatives via 1,3-Dipolar Cycloaddition and Their Biological Evaluation”. Gazi University Journal of Science 32/1 (March 2019), 78-89.
JAMA Yanmaz V, Dıslı A, Yavuz S, Ogutcu H, Dılek G. Synthesis of Some Novel Isoxazolidine Derivatives via 1,3-Dipolar Cycloaddition and Their Biological Evaluation. Gazi University Journal of Science. 2019;32:78–89.
MLA Yanmaz, Volkan et al. “Synthesis of Some Novel Isoxazolidine Derivatives via 1,3-Dipolar Cycloaddition and Their Biological Evaluation”. Gazi University Journal of Science, vol. 32, no. 1, 2019, pp. 78-89.
Vancouver Yanmaz V, Dıslı A, Yavuz S, Ogutcu H, Dılek G. Synthesis of Some Novel Isoxazolidine Derivatives via 1,3-Dipolar Cycloaddition and Their Biological Evaluation. Gazi University Journal of Science. 2019;32(1):78-89.