Conference Paper
BibTex RIS Cite
Year 2019, Volume: 32 Issue: 1, 131 - 143, 01.03.2019

Abstract

References

  • [1] Caliri, M.F., Ferreira, A.J.M. and Tita, V., “A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method”, Composite Structures, 156, 63–77, (2016). doi:10.1016/j.compstruct.2016.02.036.[2] Kutlu, A. and Omurtag, M.H., “Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method”, International Journal of Mechanical Sciences, 65, 64–74, (2012). doi:10.1016/j.ijmecsci.2012.09.004.[3] Uğurlu, B., “A dual reciprocity boundary element solution method for the free vibration analysis of fluid-coupled Kirchhoff plates”, Journal of Sound and Vibration, 340, 190–210, (2015). doi:10.1016/j.jsv.2014.12.011.[4] Ugurlu, B., Kutlu, A., Ergin, A. and Omurtag, M.H., “Dynamics of a rectangular plate resting on an elastic foundation and partially in contact with a quiescent fluid”, J. Sound. Vib., 317, 308–328, (2008). doi:10.1016/j.jsv.2008.03.022.[5] Omurtag, M.H., Özütok, A., Aköz, A.Y. and Özçelikörs, Y., “Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gâteaux differential”, International Journal for Numerical Methods in Engineering, 40, 295–317, (1997). doi:10.1002/(SICI)1097-0207(19970130)40:23.0.CO;2-2.[6] Omurtag, M.H. and Kadıoḡlu, F., “Free vibration analysis of orthotropic plates resting on Pasternak foundation by mixed finite element formulation”, Computers & Structures, 67, 253–265, (1998). doi:10.1016/S0045-7949(97)00128-4.[7] Wang, Y.H., Tham, L.G. and Cheung, Y.K., “Beams and plates on elastic foundations: a review”, Progress in Structural Engineering and Materials. 7, 174–182, (2005). doi:10.1002/pse.202.[8] Zhou, D., Lo, S.H., Au, F.T.K. and Cheung, Y.K., “Three-dimensional free vibration of thick circular plates on Pasternak foundation”, J. Sound. Vib. 292, 726–741, (2006). doi:16/j.jsv.2005.08.028.[9] Akhavan, H., Hashemi, S.H., Taher, H.R.D., Alibeigloo, A. and Vahabi, S. “Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis”, Computational Materials Science, 44, 951–961, (2009). doi:10.1016/j.commatsci.2008.07.001.[10] Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N. and Soares, C.M.M., “Analysis of plates on Pasternak foundations by radial basis functions, Comput Mech., 46, 791–803, (2010). doi:10.1007/s00466-010-0518-9.[11] Dehghan, M. and Baradaran, G.H., “Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method”, Applied Mathematics and Computation, 218, 2772–2784, (2011). doi:10.1016/j.amc.2011.08.020.[12] Ergin, A. and Uğurlu, B., “Linear vibration analysis of cantilever plates partially submerged in fluid, Journal of Fluids and Structures, 17, 927–939, (2003). doi:10.1016/S0889-9746(03)00050-1.[13] Ergin, A. and Uǧurlu, B., “Hydroelastic analysis of fluid storage tanks by using a boundary integral equation method”, Journal of Sound and Vibration, 275, 489–513, (2004). doi:10.1016/j.jsv.2003.07.034.[14] Jeong, K.-H., “Free vibration of two identical circular plates coupled with bounded fluid”, Journal of Sound and Vibration, 260, 653–670, (2003). doi:10.1016/S0022-460X(02)01012-X.[15] Jeong, K.-H. and Kim, J.-W., “Hydroelastic vibration analysis of two flexible rectangular plates partially coupled with a liquid”, Nuclear Engineering and Technology, 41, 335–346, (2009). doi:10.5516/NET.2009.41.3.335.[16] Askari, E., Jeong, K.-H. and Amabili, M., “Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface”, Journal of Sound and Vibration, 332, 3064–3085, (2013). doi:10.1016/j.jsv.2013.01.007.[17] Askari, E. and Daneshmand, F., “Free vibration of an elastic bottom plate of a partially fluid-filled cylindrical container with an internal body”, European Journal of Mechanics - A/Solids, 29, 68–80, (2010). doi:10.1016/j.euromechsol.2009.05.005.[18] Kwak, M.K. and Yang, D.-H., “Free vibration analysis of cantilever plate partially submerged into a fluid”, Journal of Fluids and Structures, 40, 25–41,(2013). doi:10.1016/j.jfluidstructs.2013.03.005.[19] Hasheminejad, S.M. and Tafani, M., “Coupled hydroelastic vibrations of an elliptical cylindrical tank with an elastic bottom”, Journal of Hydrodynamics, Ser. B., 26, 264–276, (2014). doi:10.1016/S1001-6058(14)60030-5.[20] Chiba, M., “Axisymmetric free hydroelastic vibration of a flexural bottom plate in a cylindrical tank supported on an elastic foundation”, Journal of Sound and Vibration, 169, 387–394, (1994). doi:10.1006/jsvi.1994.1024.[21] Hosseini Hashemi, S., Karimi, M. and Rokni Damavandi Taher, H., “Vibration analysis of rectangular Mindlin plates on elastic foundations and vertically in contact with stationary fluid by the Ritz method”, Ocean Eng., 37, 174–185, (2010). doi:10.1016/j.oceaneng.2009.12.001.[22] Hosseini-Hashemi, S., Karimi, M. and Hossein Rokni, D.T., “Hydroelastic vibration and buckling of rectangular Mindlin plates on Pasternak foundations under linearly varying in-plane loads”, Soil Dynamics and Earthquake Engineering, 30,1487–1499, (2010). doi:10.1016/j.soildyn.2010.06.019.[23] Kutlu, A., Uğurlu, B., Omurtag, M.H. and Ergin, A., “Dynamic response of Mindlin plates resting on arbitrarily orthotropic Pasternak foundation and partially in contact with fluid”, Ocean Eng., 42, 112–125, (2012). doi:10.1016/j.oceaneng.2012.01.010.[24] Shahbaztabar, A. and Ranji, A.R., “Effects of in-plane loads on free vibration of symmetrically cross-ply laminated plates resting on Pasternak foundation and coupled with fluid”, Ocean Engineering, 115, 196–209, (2016). doi:10.1016/j.oceaneng.2016.02.014.[25] Uğurlu, B., “Boundary element method based vibration analysis of elastic bottom plates of fluid storage tanks resting on Pasternak foundation”, Engineering Analysis with Boundary Elements, 62, 163–176, (2016). doi:10.1016/j.enganabound.2015.10.006.[26] Hasheminejad, S.M. and Mohammadi, M.M., “Hydroelastic response suppression of a flexural circular bottom plate resting on Pasternak foundation”, Acta Mechanica, (2017). doi:10.1007/s00707-017-1922-4.[27] Kutlu, A., Uğurlu, B. and Omurtag, M.H., “A combined boundary-finite element procedure for dynamic analysis of plates with fluid and foundation interaction considering free surface effect”, Ocean Engineering, 145, 34–43, (2017). doi:10.1016/j.oceaneng.2017.08.052.[28] Vinson, J.R., The Behavior of Sandwich Structures of Isotropic and Composite Materials, Technomic Pub. Co, Lancaster, Pa, (1999).[29] Sayyad, A.S. and Ghugal, Y.M., “On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results”, Composite Structures, 129, 177–201, (2015). doi:10.1016/j.compstruct.2015.04.007.[30] Szilard, R., Theories and Applications of Plate Analysis, John Wiley and Sons, (2004).

Dynamic Response of Sandwich Bottom Plate of Rigid Fluid Container Resting on Elastic Foundation

Year 2019, Volume: 32 Issue: 1, 131 - 143, 01.03.2019

Abstract

This study aims to investigate the dynamic behavior of the sandwich type bottom plate, which were not addressed before, attached to a rigid cylindrical fluid container resting on Pasternak type elastic foundation. Thin plate assumptions are incorporated with elastic foundation and plate/foundation interaction system is solved through a mixed finite element formulation. A boundary element procedure is also employed to determine the inertial effect of the involved fluid, which is considered to be ideal. The procedure is tested through the free vibration analysis of homogeneous circular bottom plates and some original results are presented regarding the properties of sandwich plates. 

References

  • [1] Caliri, M.F., Ferreira, A.J.M. and Tita, V., “A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method”, Composite Structures, 156, 63–77, (2016). doi:10.1016/j.compstruct.2016.02.036.[2] Kutlu, A. and Omurtag, M.H., “Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method”, International Journal of Mechanical Sciences, 65, 64–74, (2012). doi:10.1016/j.ijmecsci.2012.09.004.[3] Uğurlu, B., “A dual reciprocity boundary element solution method for the free vibration analysis of fluid-coupled Kirchhoff plates”, Journal of Sound and Vibration, 340, 190–210, (2015). doi:10.1016/j.jsv.2014.12.011.[4] Ugurlu, B., Kutlu, A., Ergin, A. and Omurtag, M.H., “Dynamics of a rectangular plate resting on an elastic foundation and partially in contact with a quiescent fluid”, J. Sound. Vib., 317, 308–328, (2008). doi:10.1016/j.jsv.2008.03.022.[5] Omurtag, M.H., Özütok, A., Aköz, A.Y. and Özçelikörs, Y., “Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gâteaux differential”, International Journal for Numerical Methods in Engineering, 40, 295–317, (1997). doi:10.1002/(SICI)1097-0207(19970130)40:23.0.CO;2-2.[6] Omurtag, M.H. and Kadıoḡlu, F., “Free vibration analysis of orthotropic plates resting on Pasternak foundation by mixed finite element formulation”, Computers & Structures, 67, 253–265, (1998). doi:10.1016/S0045-7949(97)00128-4.[7] Wang, Y.H., Tham, L.G. and Cheung, Y.K., “Beams and plates on elastic foundations: a review”, Progress in Structural Engineering and Materials. 7, 174–182, (2005). doi:10.1002/pse.202.[8] Zhou, D., Lo, S.H., Au, F.T.K. and Cheung, Y.K., “Three-dimensional free vibration of thick circular plates on Pasternak foundation”, J. Sound. Vib. 292, 726–741, (2006). doi:16/j.jsv.2005.08.028.[9] Akhavan, H., Hashemi, S.H., Taher, H.R.D., Alibeigloo, A. and Vahabi, S. “Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis”, Computational Materials Science, 44, 951–961, (2009). doi:10.1016/j.commatsci.2008.07.001.[10] Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N. and Soares, C.M.M., “Analysis of plates on Pasternak foundations by radial basis functions, Comput Mech., 46, 791–803, (2010). doi:10.1007/s00466-010-0518-9.[11] Dehghan, M. and Baradaran, G.H., “Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method”, Applied Mathematics and Computation, 218, 2772–2784, (2011). doi:10.1016/j.amc.2011.08.020.[12] Ergin, A. and Uğurlu, B., “Linear vibration analysis of cantilever plates partially submerged in fluid, Journal of Fluids and Structures, 17, 927–939, (2003). doi:10.1016/S0889-9746(03)00050-1.[13] Ergin, A. and Uǧurlu, B., “Hydroelastic analysis of fluid storage tanks by using a boundary integral equation method”, Journal of Sound and Vibration, 275, 489–513, (2004). doi:10.1016/j.jsv.2003.07.034.[14] Jeong, K.-H., “Free vibration of two identical circular plates coupled with bounded fluid”, Journal of Sound and Vibration, 260, 653–670, (2003). doi:10.1016/S0022-460X(02)01012-X.[15] Jeong, K.-H. and Kim, J.-W., “Hydroelastic vibration analysis of two flexible rectangular plates partially coupled with a liquid”, Nuclear Engineering and Technology, 41, 335–346, (2009). doi:10.5516/NET.2009.41.3.335.[16] Askari, E., Jeong, K.-H. and Amabili, M., “Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface”, Journal of Sound and Vibration, 332, 3064–3085, (2013). doi:10.1016/j.jsv.2013.01.007.[17] Askari, E. and Daneshmand, F., “Free vibration of an elastic bottom plate of a partially fluid-filled cylindrical container with an internal body”, European Journal of Mechanics - A/Solids, 29, 68–80, (2010). doi:10.1016/j.euromechsol.2009.05.005.[18] Kwak, M.K. and Yang, D.-H., “Free vibration analysis of cantilever plate partially submerged into a fluid”, Journal of Fluids and Structures, 40, 25–41,(2013). doi:10.1016/j.jfluidstructs.2013.03.005.[19] Hasheminejad, S.M. and Tafani, M., “Coupled hydroelastic vibrations of an elliptical cylindrical tank with an elastic bottom”, Journal of Hydrodynamics, Ser. B., 26, 264–276, (2014). doi:10.1016/S1001-6058(14)60030-5.[20] Chiba, M., “Axisymmetric free hydroelastic vibration of a flexural bottom plate in a cylindrical tank supported on an elastic foundation”, Journal of Sound and Vibration, 169, 387–394, (1994). doi:10.1006/jsvi.1994.1024.[21] Hosseini Hashemi, S., Karimi, M. and Rokni Damavandi Taher, H., “Vibration analysis of rectangular Mindlin plates on elastic foundations and vertically in contact with stationary fluid by the Ritz method”, Ocean Eng., 37, 174–185, (2010). doi:10.1016/j.oceaneng.2009.12.001.[22] Hosseini-Hashemi, S., Karimi, M. and Hossein Rokni, D.T., “Hydroelastic vibration and buckling of rectangular Mindlin plates on Pasternak foundations under linearly varying in-plane loads”, Soil Dynamics and Earthquake Engineering, 30,1487–1499, (2010). doi:10.1016/j.soildyn.2010.06.019.[23] Kutlu, A., Uğurlu, B., Omurtag, M.H. and Ergin, A., “Dynamic response of Mindlin plates resting on arbitrarily orthotropic Pasternak foundation and partially in contact with fluid”, Ocean Eng., 42, 112–125, (2012). doi:10.1016/j.oceaneng.2012.01.010.[24] Shahbaztabar, A. and Ranji, A.R., “Effects of in-plane loads on free vibration of symmetrically cross-ply laminated plates resting on Pasternak foundation and coupled with fluid”, Ocean Engineering, 115, 196–209, (2016). doi:10.1016/j.oceaneng.2016.02.014.[25] Uğurlu, B., “Boundary element method based vibration analysis of elastic bottom plates of fluid storage tanks resting on Pasternak foundation”, Engineering Analysis with Boundary Elements, 62, 163–176, (2016). doi:10.1016/j.enganabound.2015.10.006.[26] Hasheminejad, S.M. and Mohammadi, M.M., “Hydroelastic response suppression of a flexural circular bottom plate resting on Pasternak foundation”, Acta Mechanica, (2017). doi:10.1007/s00707-017-1922-4.[27] Kutlu, A., Uğurlu, B. and Omurtag, M.H., “A combined boundary-finite element procedure for dynamic analysis of plates with fluid and foundation interaction considering free surface effect”, Ocean Engineering, 145, 34–43, (2017). doi:10.1016/j.oceaneng.2017.08.052.[28] Vinson, J.R., The Behavior of Sandwich Structures of Isotropic and Composite Materials, Technomic Pub. Co, Lancaster, Pa, (1999).[29] Sayyad, A.S. and Ghugal, Y.M., “On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results”, Composite Structures, 129, 177–201, (2015). doi:10.1016/j.compstruct.2015.04.007.[30] Szilard, R., Theories and Applications of Plate Analysis, John Wiley and Sons, (2004).
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Civil Engineering
Authors

Akif Kutlu 0000-0001-6865-3022

Publication Date March 1, 2019
Published in Issue Year 2019 Volume: 32 Issue: 1

Cite

APA Kutlu, A. (2019). Dynamic Response of Sandwich Bottom Plate of Rigid Fluid Container Resting on Elastic Foundation. Gazi University Journal of Science, 32(1), 131-143.
AMA Kutlu A. Dynamic Response of Sandwich Bottom Plate of Rigid Fluid Container Resting on Elastic Foundation. Gazi University Journal of Science. March 2019;32(1):131-143.
Chicago Kutlu, Akif. “Dynamic Response of Sandwich Bottom Plate of Rigid Fluid Container Resting on Elastic Foundation”. Gazi University Journal of Science 32, no. 1 (March 2019): 131-43.
EndNote Kutlu A (March 1, 2019) Dynamic Response of Sandwich Bottom Plate of Rigid Fluid Container Resting on Elastic Foundation. Gazi University Journal of Science 32 1 131–143.
IEEE A. Kutlu, “Dynamic Response of Sandwich Bottom Plate of Rigid Fluid Container Resting on Elastic Foundation”, Gazi University Journal of Science, vol. 32, no. 1, pp. 131–143, 2019.
ISNAD Kutlu, Akif. “Dynamic Response of Sandwich Bottom Plate of Rigid Fluid Container Resting on Elastic Foundation”. Gazi University Journal of Science 32/1 (March 2019), 131-143.
JAMA Kutlu A. Dynamic Response of Sandwich Bottom Plate of Rigid Fluid Container Resting on Elastic Foundation. Gazi University Journal of Science. 2019;32:131–143.
MLA Kutlu, Akif. “Dynamic Response of Sandwich Bottom Plate of Rigid Fluid Container Resting on Elastic Foundation”. Gazi University Journal of Science, vol. 32, no. 1, 2019, pp. 131-43.
Vancouver Kutlu A. Dynamic Response of Sandwich Bottom Plate of Rigid Fluid Container Resting on Elastic Foundation. Gazi University Journal of Science. 2019;32(1):131-43.