Year 2019,
Volume: 32 Issue: 1, 175 - 184, 01.03.2019
Suleyman Sungur Tezcan
,
Mustafa Sezai Dıncer
Hıdır Duzkaya
References
- Tezcan, S. S., Dincer, M. S. and Bektas S., “Effective ionization coefficients, limiting electric fields, and electron energy distributions in CF3I+CF4+Ar ternary gas mixtures”, Phys. Plasmas, 23(7): 073507, (2016).
- Proshina, O. V., Rakhimova, T. V., Lopaev, D. V., Samara, V., Baklanov, M. R. and Marneffe, J. F., “Experimental and theoretical study of RF capacitively coupled plasma in Ar–CF4–CF3I mixtures”, Plasma Sources Sci. Technol., 24(5): 055006, (2015).
- Solomon, S., Burkholder, J. B., Ravishankara, A. R. and Garcia, R.R., “Ozone depletion and global warming potentials of CF3I”, J. Geophys. Res., 99(D10): 20929, (1994).
- Misraa, A., Sees, J., Hall, L., Levy, R.A., Zaitsev, V.B., Aryusook, K., Ravindranath, C., Sigal, V., Kesari and S., Rufin, D., “Plasma etching of dielectric films using the non-global-warming gas CF3I”, Materials Letters; 34(3-6): 415-419, (1998).
- Samukawa, S., Ichihashi, Y., Ohtake, H., Soda, E. and Saito, S., “Environmentally harmonized CF3I plasma for low-damage and highly selective low-k etching”, J. Appl. Phys., 103(5): 053310, (2008).
- Otell, Z., Samara, V., Zotovich, A., Hansen, T., Marneffe, J. F. and Baklanov, M. R., “Vacuum ultra-violet emission of CF4 and CF3I containing plasmas and their effect on low-k materials”, J. Phys. D: Appl. Phys., 48(39): 395202, (2015).
- Takeda, T., Matsuoka, S., Kumada, A. and Hidaka, K., “Sparkover characteristics in CF3I gas and CF3I/N2 gas mixture under non-uniform field gaps”, IEEJ Trans. Power Energy, 130(9): 813-818, (2010).
- Miric, J., Bosnjakovic, D., Simonovic, I., Petrovic. Z. L. and Dujko, S., “Electron swarm properties under the influence of a very strong attachment in SF6 and CF3I obtained by Monte Carlo rescaling procedures”, Plasma Sources Sci. Technol., 25(6): 065010, (2016).
- Urquijo, J., Mitrani, A., Ruiz-Vargas, G. and Basurto, E., “Limiting field strength and electron swarm coefficients of the CF3I–SF6 gas mixture”, J. Phys. D: Appl. Phys., 44(34): 342001, (2011).
- Yun-Kun, D. and Deng-Ming, X., “The effective ionization coefficients and electron drift velocities in gas mixtures of CF3I with N2 and CO2 obtained from Boltzmann equation analysis”, Chin. Phys. B, 22(3): 035101, (2013).
- Chen, L., Widger, P., Kamarudin, M. S., Griffiths, H. and Haddad, A., “CF3I gas mixtures: Breakdown characteristics and potential for electrical insulation”, IEEE Trans. Power Del., 32(2): 1089-1097, (2017).
- Tezcan, S. S., Dincer, M. S., Bektas, S. and Hiziroglu, H. R., “Boltzmann analysis of electron swarm parameters in binary CF4+Ar mixtures”, IEEE Trans. Dielectr. Electr. Insul., 20(1): 98-103, (2013).
- Tezcan, S. S., Duzkaya, H., Dincer, M. S. and Hiziroglu, H. R., “Assessment of electron swarm parameters and limiting electric fields in SF6+CF4+Ar gas mixtures”, IEEE Trans. Dielectr. Electr. Insul., 23(4): 1996-2005, (2016).
- Pinheiro, M. J. and Loureiro, J., “Effective ionization coefficients and electron drift velocities in gas mixtures of SF6 with He, Xe, CO2 and N2 from Boltzmann analysis”, J. Phys. D: Appl. Phys., 35(23): 3077-3084, (2002).
- Tezcan, S. S., Akcayol, M. A., Ozerdem, O. C. and Dincer, M. S., “Calculation of electron energy distribution functions from electron swarm parameters using artificial neural network in SF6 and Argon”, IEEE Trans. Plasma Sci., 38(9): 2332-2339, (2010).
- Hayashi, M., “Bibliography of electron and photon cross sections with atoms and molecules published in the 20th century – Argon”, National Institute for Fusion Science, Report No. NIFS-DATA-72, Sokendai, (2003).
- Yanguas-Gil, A., Cotrino, J. and Alves, L. L., “An update of argon inelastic cross sections for plasma discharges”, J. Phys. D: Appl. Phys., 38(10): 1588-1598, (2005).
- Kurihara, M., Petrovic, Z. L. and Makabe, T., “Transport coefficients and scattering cross-sections for plasma modelling in CF4-Ar mixtures: a swarm analysis”, J. Phys. D: Appl. Phys., 33(17): 2146-2153, (2000).
- Xingwen, L., Zhao, H., Wu, J. and Jia, S., “Analysis of the insulation characteristics of CF3I mixtures with CF4, CO2, N2, O2 and air”, J. Phys. D: Appl. Phys., 46(34): 345203, (2013).
- Kimura, M. and Nakamura, Y., “Electron swarm parameters in CF3I and a set of electron collision cross sections for the CF3I molecule,” J. Phys. D: Appl. Phys., 43(14): 145202, (2010).
- Kawaguchi, S., Satoh, K. and Itoh, H., “Electron transport in CF3I and CF3I-N2 mixtures”, Eur. Phys. J. D, 68:100, (2014).
- Urquijo, J., Juarez, A. M., Basurto, E. and Hernandez-Avila, J. L., “Electron impact ionization and attachment, drift velocities and longitudinal diffusion in CF3I and CF3I–N2 mixtures”, J. Phys. D: Appl. Phys., 40(7): 2205-2209, (2007).
Ionızation, Attachment and Positive Synergism in CF3I+CF4+Ar Gas Mixtures with Dilute CF3I Components
Year 2019,
Volume: 32 Issue: 1, 175 - 184, 01.03.2019
Suleyman Sungur Tezcan
,
Mustafa Sezai Dıncer
Hıdır Duzkaya
Abstract
The
purpose of the present paper is to evaluate the swarm parameters in CF3I+CF4+Ar
ternary gas mixtures with dilute CF3I components. The swarm
parameters reported are namely, ionization, attachment, effective ionization,
excitation rates and electron mean energies.
We present the swarm data of the ternary mixture for various CF4+Ar
base mixtures with dilute CF3I concentrations and analyze positive
synergism in terms of attachment, ionization and excitation rates in the E/N
range of 50–700 Td (1 Td = 10-21 Vm2). In the ternary mixture, Ar component of the
ternary mixture is kept constant at concentrations in the range of 40% - 90%
and the CF3I component is increased from 0.5% to 55%. In the dilute
CF3I mixtures, there is a marked increase in the electronegativity
together with increased total excitation rates while the CF3I
component is increased. The mean energy of electrons is also reduced with
increasing CF3I content at given E/N accordingly. The limiting E/N
values are obtained at the E/N values where the rate of ionization is equal to
the rate of attachment. The limiting E/N increases in the ternary mixture as
the CF3I ratio is increased in the present study. The synergism is
calculated using the Boltzmann solution results of the limiting E/N fields.
Positive synergism is observed within the parameter range of this study. The
degree of synergy is very high with dilute CF3I components.
References
- Tezcan, S. S., Dincer, M. S. and Bektas S., “Effective ionization coefficients, limiting electric fields, and electron energy distributions in CF3I+CF4+Ar ternary gas mixtures”, Phys. Plasmas, 23(7): 073507, (2016).
- Proshina, O. V., Rakhimova, T. V., Lopaev, D. V., Samara, V., Baklanov, M. R. and Marneffe, J. F., “Experimental and theoretical study of RF capacitively coupled plasma in Ar–CF4–CF3I mixtures”, Plasma Sources Sci. Technol., 24(5): 055006, (2015).
- Solomon, S., Burkholder, J. B., Ravishankara, A. R. and Garcia, R.R., “Ozone depletion and global warming potentials of CF3I”, J. Geophys. Res., 99(D10): 20929, (1994).
- Misraa, A., Sees, J., Hall, L., Levy, R.A., Zaitsev, V.B., Aryusook, K., Ravindranath, C., Sigal, V., Kesari and S., Rufin, D., “Plasma etching of dielectric films using the non-global-warming gas CF3I”, Materials Letters; 34(3-6): 415-419, (1998).
- Samukawa, S., Ichihashi, Y., Ohtake, H., Soda, E. and Saito, S., “Environmentally harmonized CF3I plasma for low-damage and highly selective low-k etching”, J. Appl. Phys., 103(5): 053310, (2008).
- Otell, Z., Samara, V., Zotovich, A., Hansen, T., Marneffe, J. F. and Baklanov, M. R., “Vacuum ultra-violet emission of CF4 and CF3I containing plasmas and their effect on low-k materials”, J. Phys. D: Appl. Phys., 48(39): 395202, (2015).
- Takeda, T., Matsuoka, S., Kumada, A. and Hidaka, K., “Sparkover characteristics in CF3I gas and CF3I/N2 gas mixture under non-uniform field gaps”, IEEJ Trans. Power Energy, 130(9): 813-818, (2010).
- Miric, J., Bosnjakovic, D., Simonovic, I., Petrovic. Z. L. and Dujko, S., “Electron swarm properties under the influence of a very strong attachment in SF6 and CF3I obtained by Monte Carlo rescaling procedures”, Plasma Sources Sci. Technol., 25(6): 065010, (2016).
- Urquijo, J., Mitrani, A., Ruiz-Vargas, G. and Basurto, E., “Limiting field strength and electron swarm coefficients of the CF3I–SF6 gas mixture”, J. Phys. D: Appl. Phys., 44(34): 342001, (2011).
- Yun-Kun, D. and Deng-Ming, X., “The effective ionization coefficients and electron drift velocities in gas mixtures of CF3I with N2 and CO2 obtained from Boltzmann equation analysis”, Chin. Phys. B, 22(3): 035101, (2013).
- Chen, L., Widger, P., Kamarudin, M. S., Griffiths, H. and Haddad, A., “CF3I gas mixtures: Breakdown characteristics and potential for electrical insulation”, IEEE Trans. Power Del., 32(2): 1089-1097, (2017).
- Tezcan, S. S., Dincer, M. S., Bektas, S. and Hiziroglu, H. R., “Boltzmann analysis of electron swarm parameters in binary CF4+Ar mixtures”, IEEE Trans. Dielectr. Electr. Insul., 20(1): 98-103, (2013).
- Tezcan, S. S., Duzkaya, H., Dincer, M. S. and Hiziroglu, H. R., “Assessment of electron swarm parameters and limiting electric fields in SF6+CF4+Ar gas mixtures”, IEEE Trans. Dielectr. Electr. Insul., 23(4): 1996-2005, (2016).
- Pinheiro, M. J. and Loureiro, J., “Effective ionization coefficients and electron drift velocities in gas mixtures of SF6 with He, Xe, CO2 and N2 from Boltzmann analysis”, J. Phys. D: Appl. Phys., 35(23): 3077-3084, (2002).
- Tezcan, S. S., Akcayol, M. A., Ozerdem, O. C. and Dincer, M. S., “Calculation of electron energy distribution functions from electron swarm parameters using artificial neural network in SF6 and Argon”, IEEE Trans. Plasma Sci., 38(9): 2332-2339, (2010).
- Hayashi, M., “Bibliography of electron and photon cross sections with atoms and molecules published in the 20th century – Argon”, National Institute for Fusion Science, Report No. NIFS-DATA-72, Sokendai, (2003).
- Yanguas-Gil, A., Cotrino, J. and Alves, L. L., “An update of argon inelastic cross sections for plasma discharges”, J. Phys. D: Appl. Phys., 38(10): 1588-1598, (2005).
- Kurihara, M., Petrovic, Z. L. and Makabe, T., “Transport coefficients and scattering cross-sections for plasma modelling in CF4-Ar mixtures: a swarm analysis”, J. Phys. D: Appl. Phys., 33(17): 2146-2153, (2000).
- Xingwen, L., Zhao, H., Wu, J. and Jia, S., “Analysis of the insulation characteristics of CF3I mixtures with CF4, CO2, N2, O2 and air”, J. Phys. D: Appl. Phys., 46(34): 345203, (2013).
- Kimura, M. and Nakamura, Y., “Electron swarm parameters in CF3I and a set of electron collision cross sections for the CF3I molecule,” J. Phys. D: Appl. Phys., 43(14): 145202, (2010).
- Kawaguchi, S., Satoh, K. and Itoh, H., “Electron transport in CF3I and CF3I-N2 mixtures”, Eur. Phys. J. D, 68:100, (2014).
- Urquijo, J., Juarez, A. M., Basurto, E. and Hernandez-Avila, J. L., “Electron impact ionization and attachment, drift velocities and longitudinal diffusion in CF3I and CF3I–N2 mixtures”, J. Phys. D: Appl. Phys., 40(7): 2205-2209, (2007).