Year 2025,
Early View, 1 - 1
Hatice Hilal Yücel Kurt
,
Erhan Ongun
Project Number
BAP: FDK-2023-8704
References
- [1] Vossen, J. L., "Thin Film Processes", Academic Press, INC., New York, (1978).
- [2] Kurt, H. Y., Kurt, E., Salamov, B.G., “Fractal processing for an analysis of the quality and resistivity of large semiconductor plates”, Crystal Research and Technology 39(9): 743-753, (2004).
- [3] Go, D. B., and Venkattraman, A., “Microscale gas breakdown: Ion-enhanced field emission and the modified Paschen’s curve”, Journal of Physics D: Applied Physics, 47: 503001, (2014).
- [4] Liangliang, L., and Wang, Q., “Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis”, Plasma Chemistry and Plasma Processing, 35: 925-962, (2015).
- [5] Schoenbach, K. H., and Becker, K., “20 years of microplasma research: A status report”, The European Physical Journal D, 70: 29, (2016).
- [6] Tabib-Azar, M., Pai, P., “Microplasma Field Effect Transistors”, Micromachines, 8: 117, (2017).
- [7] Garner, A.L., Meng, G., Fu, Y., Loveless, A.M., Brayfield II, R.S., Darr, A.M., “Transitions between electron emission and gas breakdown mechanisms across length and pressure scales”, Journal of Applied Physics, 128, 210903, (2020).
- [8] Garner, A. L., Loveless, A. M., Dahal, J. N., Venkattraman, A., “A tutorial on theoretical and computational techniques for gas breakdown in microscale gaps”, IEEE Transactions on Plasma Science, 48: 808-824, (2020).
- [9] Chiang, W.-H., Mariotti, D., Sankaran, R. M., Eden, J. G., and Ostrikov, K., “Microplasmas for advanced materials and devices”, Advanced Materials, 32(18): 1905508, (2020).
- [10] Tournié, E., Bartolome, L.M., Calvo, M.R., Loghmari, Z., Díaz-Thomas, D.A., Teissier, R., Baranov, A.N., Cerutti, L., and Rodriguez, J-B., “Mid-infrared III–V semiconductor lasers epitaxially grown on Si substrates”, Science & Applications, 11: 165, (2022).
- [11] Wang, Q., Economou, D. J., Donnelly, V. M., “Simulation of a direct current microplasma discharge in helium at atmospheric pressure”, Journal of Applied Physics, 100: 023301, (2006).
- [12] Bülbül, M. M., Kurt, H. H., Salamov, B., “Surface behaviour of plasma etched photodetector in a planar gas discharge image converter”, Malmö, Sweden 7th International Conference on Nanometer-Scale Science and Technology, (2002).
- [13] Kurt, H. Y., Salamov, B.G., and Mammadov, T.S., “Electrical instability in a semiconductor gas discharge system”, Crystal Research and Technology, 40(12): 1160-1164, (2005).
- [14] Sadiq, Y., Kurt, H. Y., Albarzanji, A.O., Alekperov, S.D, Salamov, B.G., “Transport properties in semiconductor-gas discharge electronic devices”, Solid-state Electronics, 53(9): 509-1015, (2009).
- [15] Kurt, H. H., Koc, E., Salamov, B. G., “Atmospheric Pressure DC Glow Discharge in Semiconductor Gas Discharge Electronic Devices”, IEEE Transactions on Plasma Science, 38(2): 137-141, (2010).
- [16] Kurt, H. H., Tanrıverdi, E., Salamov, B.G., “Optical and electrical properties of CdS material in a microplasma cell under IR stimulation”, The Journal of The Minerals, Metals & Materials Society (JOM), 71(2): 644-650, (2019).
- [17] Kurt, H.Y., Sadiq, Y., Salamov, B.G., “Nonlinear electrical characteristics of semi‐insulating GaAs”, Physica Status Solidi (A), 205(2): 321-329, (2008).
- [18] Kurt, H.Y., Kalkan, G., Özer, M., Tanrıverdi, E., Yigit, D., “The Effect of the Oxidation on GaAs Semiconductor Surface to the System Characteristics in a Double-Gapped Plasma Cell”, Journal of Polytechnic, 17(4): 161-165, (2014).
- [19] Kurt, H. H., Tanrıverdi, E., “The Features of GaAs and GaP Semiconductor Cathodes in an Infrared Converter System”, Journal of Electronic Materials, 46: 4024–4033, (2017).
- [20] Kurt, H. H., Tanrıverdi, E., “Electrical Properties of ZnS and ZnSe Semiconductors in a Plasma-Semiconductor System”, Journal of Electronic Materials, 46: 3965-3975, (2017).
- [21] Kurt, H. H., “Exploration of Gas Discharges with GaAs, GaP and ZnSe Electrodes Under Atmospheric Pressure”, Journal of Electronic Materials, (2018). DOI: 10.1007/s11664-018-6161-5
- [22] Kurt, H. H., Salamov, B.G., “Breakdown Phenomenon and Electrical Process in a Microplasma System with InP Electrode”, The Journal of The Minerals, Metals & Materials Society (JOM), 72: 651–657, (2020).
- [23] Guo, J., Zhao, J., Yang, M., “Interface engineering of InGaAs/InP layer for photocathode”, Optik. 212, 164738, (2020).
- [24] Vurgaftman, I., Meyer, J. R., Ram-Mohan, L. R., “Band parameters for III–V compound semiconductors and their alloys”, Journal of Applied Physics, 89: 5815–5875, (2001).
- [25] Dutta, P. S., Bhat, H. L., Kumar, V., “The physics and technology of gallium antimonide: an emerging optoelectronic material”, Journal of Applied Physics, 81: 5821–5870, (1997).
- [26] Ongun, E., Yücel Kurt, H.H., Utaş, S., “Investigation of direct current micro glow discharge plasma in the modified zinc selenide-argon system”, 8th International Conference on Innovative Studies of Contemporary Sciences, Tokyo Summit, ISBN-978-1-955094-91-7, (2024).
- [27] Yücel, H.H., Utaş, S., Ongun, E., “The study of DC- and AC-driven GaAs-coupled gas discharge micro plasma systems: Modeling and simulation”, Journal of Electronic Materials, 53: 3792-3808, (2024).
- [28] Ongun, E., Utaş, S., Yücel Kurt, H.H., Hançerlioğulları, A., “The investigation of spatiotemporal dynamics of planar DC field emission-driven gas discharge-semiconductor microplasma system (GDSµPS)”, Turkish Physical Society 39th International Physics Congress, Bodrum Türkiye, (2023).
- [29] Naresh, C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles”, Journal of Applied Physics, 110: 046101, (2011).
- [30] Ongun, E., “Examination of optical and metamaterial behaviours exhibited by sculptured thin-films”, Master’s Thesis, İstanbul Technical University, Graduate School of Natural and Applied Sciences, Materials Engineering Program, (2012).
- [31] Brayfield, II R. S., Fairbanks, A. J., Loveless, A. M., Gao, S., Dhanabal, A., Li, W., Darr, C., Wu, W., and Garner, A. L., “The impact of cathode surface roughness and multiple breakdown events on microscale gas breakdown at atmospheric pressure”, Journal of Applied Physics, 125: 203302, (2019).
- [32] Fu, Y., Zhang, P., Krek, J., and Verboncoeur, J. P., “Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions”, Applied Physics Letters, 114: 014102, (2019).
- [33] Malayter, J. R. and Garner, A. L., “Theoretical assessment of surface waviness on work function”, AIP Advances, 10: 095110, (2020).
- [34] Zhang, J., Wang, Y., Li, D., Sun, Y., “Engineering Surface Plasmons in Metal/Nonmetal Structures for Highly Desirable Plasmonic Photodetectors”, ACS Materials Letters, 4(2), 343−355, (2022).
- [35] Mijović, S. and Vučeljić, Mira., “Determination of Electron Energy Distribution Function from the Intensity of Spectral Lines by Tikhonov Regularization Method in Low Pressure Helium Plasma”, Romanian Reports in Physics, 65(4): 1384–1389, (2013).
- [36] Salamov, B.G., Kurt, H. H., “Ar-driven gas discharge system based on dielectric zeolite material”, The Journal of The Minerals, Metals & Materials Society (JOM), 72: 644–650, (2020).
- [37] Bennett, B. R., Khan, S. A., Boos, J. B., Papanicolaou, N. A., Kuznetsov, V. V., “AlGaSb Buffer Layers for Sb-Based Transistors”, Journal of Electronic Materials, 39(10): 2196–2202, (2010).
- [38] Bennett, B. R., Boos, J. B., Ancona, M. G., Papanicolaou, N. A., Cooke, G. A., Kheyrandish, H., “InAlSb/InAs/AlGaSb Quantum Well Heterostructures for High-Electron-Mobility Transistors”, Journal of Electronic Materials, 36(2): 99–104, (2007).
- [39] Kurt, H. H., “Exploration of the infrared sensitivity for a ZnSe electrode of an IR image converter”, Journal of Electronic Materials, 47(8): 4486-4492, (2018).
- [40] Kurt, H. H., “An Optical Method for the Quality Exploration of a GaAs Material”, Gazi University Journal of Science Part A: Engineering and Innovation GUJ Sci Part: A, 2(2): 87-98, (2014).
- [41] Ongun, E., Utaş, S., Yücel Kurt, H.H., Hançerlioğulları, A., “Modeling and Simulation of DC Glow Discharges in the AlGaSb -coupled Ar/H2 Hybrid Micro Plasma System”, Journal of Polytechnic, (2024). DOI: 10.2339/politeknik.1406036
- [42] Ongun, E., Yücel Kurt H.H., Utaş, S., “DC-driven subatmospheric glow discharges in the infrared-stimulated”, Journal of Materials Science: Materials in Electronics, 35: 655, 1-14, (2024).
- [43] Yücel, H.H., Utaş, S., Ongun, E., “The investigation of direct current microdischarges in HgCdTe-coupled Ar/H2 gas medium at atmospheric and hyper-atmospheric pressures”, Optoelectronics and Advanced Materials – Rapid Communications, 18(5-6): 296-304, (2024).
- [44] Ongun, E., Yücel, H.H., “Spatiotemporal modeling and simulation of DC microplasma glow discharges in ZnSe-Ar/H2 system”, Inspiring Technologies and Innovations, 3(1): 1-8, (2024).
Investigation of DC -driven Glow Discharges in Subatmospheric Planar AlGaSb-Ar/He Microplasma System
Year 2025,
Early View, 1 - 1
Hatice Hilal Yücel Kurt
,
Erhan Ongun
Abstract
Various studies have been reported on the theoretical and experimental investigation of planar DC -driven gas discharge-semiconductor micro plasma systems (GDSµPS) for infrared sensing and thermal image conversion applications.
This conceptual research study is carried out to investigate the infrared-stimulated semiconductor-micro plasma hybrid systems using the finite-element method (FEM) solver COMSOL Multiphysics plasma simulation program. The computational simulation in this study was carried out based on the boundary-separated mesh structure to visualize the spatio-temporal distribution of Electron Density (ED) and Electron Current Density (ECD) patterns across planar discharge cell. Numerical analyses were performed based on mixture-averaged diffusion drift theory and Maxwellian electron energy distribution function. The micro plasma reactor cell is composed of a planar anode/cathode electrode pair in a 2-dimensional square chamber separated at a gap distance of 100 µm. A III-antimonide compound semiconductor, Aluminum Gallium Antimonide (AlGaSb), with micron-scale digitized electron emission surface is coupled to argon/helium (Ar/He) gas medium mixed in various (%) molar fractions at a constant total pressure of 200 Torr sub atmospheric. The electrical equivalent circuit model is driven at 1.350 VDC by virtual voltage source. The fast transient DC glow discharges are simulated for each mixture model, the spatio-temporal curves and patterns are displayed in multidimensional graphical media, compared, and analyzed with respect to the reference model. It is figured out that binary Ar/He gas discharge system plays an important role in shaping the glow discharge characteristics of GDSµPS for bandgap-tunable infrared-to-visible wavelength conversion device application. In the end, argon mixed with helium at a molar fraction of 30% is proposed for the intended infrared image converting concept by this study.
Ethical Statement
The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.
Supporting Institution
Gazi University
Project Number
BAP: FDK-2023-8704
Thanks
This study has been supported by Gazi University Scientific Research Projects Coordination Unit (BAP Project Number: FDK-2023-8704). The authors would like to thank Gazi University for this support.
References
- [1] Vossen, J. L., "Thin Film Processes", Academic Press, INC., New York, (1978).
- [2] Kurt, H. Y., Kurt, E., Salamov, B.G., “Fractal processing for an analysis of the quality and resistivity of large semiconductor plates”, Crystal Research and Technology 39(9): 743-753, (2004).
- [3] Go, D. B., and Venkattraman, A., “Microscale gas breakdown: Ion-enhanced field emission and the modified Paschen’s curve”, Journal of Physics D: Applied Physics, 47: 503001, (2014).
- [4] Liangliang, L., and Wang, Q., “Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis”, Plasma Chemistry and Plasma Processing, 35: 925-962, (2015).
- [5] Schoenbach, K. H., and Becker, K., “20 years of microplasma research: A status report”, The European Physical Journal D, 70: 29, (2016).
- [6] Tabib-Azar, M., Pai, P., “Microplasma Field Effect Transistors”, Micromachines, 8: 117, (2017).
- [7] Garner, A.L., Meng, G., Fu, Y., Loveless, A.M., Brayfield II, R.S., Darr, A.M., “Transitions between electron emission and gas breakdown mechanisms across length and pressure scales”, Journal of Applied Physics, 128, 210903, (2020).
- [8] Garner, A. L., Loveless, A. M., Dahal, J. N., Venkattraman, A., “A tutorial on theoretical and computational techniques for gas breakdown in microscale gaps”, IEEE Transactions on Plasma Science, 48: 808-824, (2020).
- [9] Chiang, W.-H., Mariotti, D., Sankaran, R. M., Eden, J. G., and Ostrikov, K., “Microplasmas for advanced materials and devices”, Advanced Materials, 32(18): 1905508, (2020).
- [10] Tournié, E., Bartolome, L.M., Calvo, M.R., Loghmari, Z., Díaz-Thomas, D.A., Teissier, R., Baranov, A.N., Cerutti, L., and Rodriguez, J-B., “Mid-infrared III–V semiconductor lasers epitaxially grown on Si substrates”, Science & Applications, 11: 165, (2022).
- [11] Wang, Q., Economou, D. J., Donnelly, V. M., “Simulation of a direct current microplasma discharge in helium at atmospheric pressure”, Journal of Applied Physics, 100: 023301, (2006).
- [12] Bülbül, M. M., Kurt, H. H., Salamov, B., “Surface behaviour of plasma etched photodetector in a planar gas discharge image converter”, Malmö, Sweden 7th International Conference on Nanometer-Scale Science and Technology, (2002).
- [13] Kurt, H. Y., Salamov, B.G., and Mammadov, T.S., “Electrical instability in a semiconductor gas discharge system”, Crystal Research and Technology, 40(12): 1160-1164, (2005).
- [14] Sadiq, Y., Kurt, H. Y., Albarzanji, A.O., Alekperov, S.D, Salamov, B.G., “Transport properties in semiconductor-gas discharge electronic devices”, Solid-state Electronics, 53(9): 509-1015, (2009).
- [15] Kurt, H. H., Koc, E., Salamov, B. G., “Atmospheric Pressure DC Glow Discharge in Semiconductor Gas Discharge Electronic Devices”, IEEE Transactions on Plasma Science, 38(2): 137-141, (2010).
- [16] Kurt, H. H., Tanrıverdi, E., Salamov, B.G., “Optical and electrical properties of CdS material in a microplasma cell under IR stimulation”, The Journal of The Minerals, Metals & Materials Society (JOM), 71(2): 644-650, (2019).
- [17] Kurt, H.Y., Sadiq, Y., Salamov, B.G., “Nonlinear electrical characteristics of semi‐insulating GaAs”, Physica Status Solidi (A), 205(2): 321-329, (2008).
- [18] Kurt, H.Y., Kalkan, G., Özer, M., Tanrıverdi, E., Yigit, D., “The Effect of the Oxidation on GaAs Semiconductor Surface to the System Characteristics in a Double-Gapped Plasma Cell”, Journal of Polytechnic, 17(4): 161-165, (2014).
- [19] Kurt, H. H., Tanrıverdi, E., “The Features of GaAs and GaP Semiconductor Cathodes in an Infrared Converter System”, Journal of Electronic Materials, 46: 4024–4033, (2017).
- [20] Kurt, H. H., Tanrıverdi, E., “Electrical Properties of ZnS and ZnSe Semiconductors in a Plasma-Semiconductor System”, Journal of Electronic Materials, 46: 3965-3975, (2017).
- [21] Kurt, H. H., “Exploration of Gas Discharges with GaAs, GaP and ZnSe Electrodes Under Atmospheric Pressure”, Journal of Electronic Materials, (2018). DOI: 10.1007/s11664-018-6161-5
- [22] Kurt, H. H., Salamov, B.G., “Breakdown Phenomenon and Electrical Process in a Microplasma System with InP Electrode”, The Journal of The Minerals, Metals & Materials Society (JOM), 72: 651–657, (2020).
- [23] Guo, J., Zhao, J., Yang, M., “Interface engineering of InGaAs/InP layer for photocathode”, Optik. 212, 164738, (2020).
- [24] Vurgaftman, I., Meyer, J. R., Ram-Mohan, L. R., “Band parameters for III–V compound semiconductors and their alloys”, Journal of Applied Physics, 89: 5815–5875, (2001).
- [25] Dutta, P. S., Bhat, H. L., Kumar, V., “The physics and technology of gallium antimonide: an emerging optoelectronic material”, Journal of Applied Physics, 81: 5821–5870, (1997).
- [26] Ongun, E., Yücel Kurt, H.H., Utaş, S., “Investigation of direct current micro glow discharge plasma in the modified zinc selenide-argon system”, 8th International Conference on Innovative Studies of Contemporary Sciences, Tokyo Summit, ISBN-978-1-955094-91-7, (2024).
- [27] Yücel, H.H., Utaş, S., Ongun, E., “The study of DC- and AC-driven GaAs-coupled gas discharge micro plasma systems: Modeling and simulation”, Journal of Electronic Materials, 53: 3792-3808, (2024).
- [28] Ongun, E., Utaş, S., Yücel Kurt, H.H., Hançerlioğulları, A., “The investigation of spatiotemporal dynamics of planar DC field emission-driven gas discharge-semiconductor microplasma system (GDSµPS)”, Turkish Physical Society 39th International Physics Congress, Bodrum Türkiye, (2023).
- [29] Naresh, C. Das, “Tunable infrared plasmonic absorption by metallic nanoparticles”, Journal of Applied Physics, 110: 046101, (2011).
- [30] Ongun, E., “Examination of optical and metamaterial behaviours exhibited by sculptured thin-films”, Master’s Thesis, İstanbul Technical University, Graduate School of Natural and Applied Sciences, Materials Engineering Program, (2012).
- [31] Brayfield, II R. S., Fairbanks, A. J., Loveless, A. M., Gao, S., Dhanabal, A., Li, W., Darr, C., Wu, W., and Garner, A. L., “The impact of cathode surface roughness and multiple breakdown events on microscale gas breakdown at atmospheric pressure”, Journal of Applied Physics, 125: 203302, (2019).
- [32] Fu, Y., Zhang, P., Krek, J., and Verboncoeur, J. P., “Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions”, Applied Physics Letters, 114: 014102, (2019).
- [33] Malayter, J. R. and Garner, A. L., “Theoretical assessment of surface waviness on work function”, AIP Advances, 10: 095110, (2020).
- [34] Zhang, J., Wang, Y., Li, D., Sun, Y., “Engineering Surface Plasmons in Metal/Nonmetal Structures for Highly Desirable Plasmonic Photodetectors”, ACS Materials Letters, 4(2), 343−355, (2022).
- [35] Mijović, S. and Vučeljić, Mira., “Determination of Electron Energy Distribution Function from the Intensity of Spectral Lines by Tikhonov Regularization Method in Low Pressure Helium Plasma”, Romanian Reports in Physics, 65(4): 1384–1389, (2013).
- [36] Salamov, B.G., Kurt, H. H., “Ar-driven gas discharge system based on dielectric zeolite material”, The Journal of The Minerals, Metals & Materials Society (JOM), 72: 644–650, (2020).
- [37] Bennett, B. R., Khan, S. A., Boos, J. B., Papanicolaou, N. A., Kuznetsov, V. V., “AlGaSb Buffer Layers for Sb-Based Transistors”, Journal of Electronic Materials, 39(10): 2196–2202, (2010).
- [38] Bennett, B. R., Boos, J. B., Ancona, M. G., Papanicolaou, N. A., Cooke, G. A., Kheyrandish, H., “InAlSb/InAs/AlGaSb Quantum Well Heterostructures for High-Electron-Mobility Transistors”, Journal of Electronic Materials, 36(2): 99–104, (2007).
- [39] Kurt, H. H., “Exploration of the infrared sensitivity for a ZnSe electrode of an IR image converter”, Journal of Electronic Materials, 47(8): 4486-4492, (2018).
- [40] Kurt, H. H., “An Optical Method for the Quality Exploration of a GaAs Material”, Gazi University Journal of Science Part A: Engineering and Innovation GUJ Sci Part: A, 2(2): 87-98, (2014).
- [41] Ongun, E., Utaş, S., Yücel Kurt, H.H., Hançerlioğulları, A., “Modeling and Simulation of DC Glow Discharges in the AlGaSb -coupled Ar/H2 Hybrid Micro Plasma System”, Journal of Polytechnic, (2024). DOI: 10.2339/politeknik.1406036
- [42] Ongun, E., Yücel Kurt H.H., Utaş, S., “DC-driven subatmospheric glow discharges in the infrared-stimulated”, Journal of Materials Science: Materials in Electronics, 35: 655, 1-14, (2024).
- [43] Yücel, H.H., Utaş, S., Ongun, E., “The investigation of direct current microdischarges in HgCdTe-coupled Ar/H2 gas medium at atmospheric and hyper-atmospheric pressures”, Optoelectronics and Advanced Materials – Rapid Communications, 18(5-6): 296-304, (2024).
- [44] Ongun, E., Yücel, H.H., “Spatiotemporal modeling and simulation of DC microplasma glow discharges in ZnSe-Ar/H2 system”, Inspiring Technologies and Innovations, 3(1): 1-8, (2024).