Research Article
BibTex RIS Cite
Year 2021, Volume: 34 Issue: 1, 180 - 194, 01.03.2021
https://doi.org/10.35378/gujs.653906

Abstract

References

  • [1] Yaglom, I. M., Complex Numbers in Geometry, Academic Press, New York, (1968).
  • [2] Sobczyk, G., “The hyperbolic number plane”, The College Mathematics Journal, 26(4): 268-280, (1995).
  • [3] Fjelstad, P., “Extending special relativity via the perplex numbers”, American Journal of Physics, 54(5): 416-422 (1986).
  • [4] Study, E., Geometrie der Dynamen. Leipzig, (1903).
  • [5] Pennestrì, E., Stefanelli, R., “Linear algebra and numerical algorithms using dual numbers”, Multibody System Dynamics, 18(3): 323-344 (2007).
  • [6] Majernik, V., “Multicomponent number systems”, Acta Physica Polonica A, 90: 491-498, (1996).
  • [7] Harkin, A. A., Harkin, J. B., “Geometry of generalized complex numbers”, Mathematics Magazine, 77(2): 118-129, (2004).
  • [8] Cockle, J., “On a new imaginary in algebra”, Philosophical magazine, London-Dublin-Edinburgh, 34(226): 37-47, (1849).
  • [9] Kantor, I., Solodovnikov, A., Hypercomplex Numbers, Springer-Verlag, New York, (1989).
  • [10] Alfsmann, D., “On families of 2N-dimensional hypercomplex algebras suitable for digital signal processing”, 14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, (2006).
  • [11] Fjelstad, P., Sorin, G. Gal, “ n -dimensional hyperbolic complex numbers”, Advances in Applied Clifford Algebras, 8(1): 47-68, (1998).
  • [12] Price G. B., An introduction to multicomplex spaces and functions, New York: M. Dekker, (1991).
  • [13] Toyoshima H., “Computationally efficient bicomplex multipliers for digital signal processing”, IEICE Transactions on Information and Systems, 81(2): 236-238, (1998).
  • [14] Rochon, D., Shapiro, M., “On algebraic properties of bicomplex and hyperbolic numbers”, Analele Universitatii din Oradea. Fascicola Matematica, 11: 71-110, (2004).
  • [15] Cheng, H. H., Thompson, S., “Dual polynomials and complex dual numbers for analysis of spatial mechanisms”, Proc. of ASME 24th Biennial Mechanisms Conference, Irvine, CA, August,19-22, (1996).
  • [16] Cheng, H. H., Thompson, S., “Singularity analysis of spatial mechanisms using dual polynomials and complex dual numbers”, Journal of Mechanical Design, 121(2): 200–205, (1999).
  • [17] Messelmi, F., “Dual-complex numbers and their holomorphic functions”, hal-01114178, (2015).
  • [18] Akar, M., Yüce, S., Şahin, S., “On the dual hyperbolic numbers and the complex hyperbolic numbers”, Journal of Computer Science & Computational Mathematics, 8 (1): 1-6, (2018).
  • [19] Fike, J. A., “Numerically exact derivative calculations using hyper-dual numbers”, 3rd Annual Student Joint Workshop in Simulation-Based Engineering and Design, (2009).
  • [20] Fike, J. A., Alonso J. J., “The development of hyper-dual numbers for exact second- derivative calculations”, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, (2011).
  • [21] Fike, J. A., Jongsma, S., Alonso J. J., Weide E. Van Der, “Optimization with gradient and hessian information calculated using hyper-dual numbers”, 29th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, (2011).
  • [22] Cohen, A., Shoham, M., “Principle of transference-An extension to hyper-dual numbers”, Mechanism and Machine Theory, 125: 101-110, (2018).
  • [23] Fike, J. A., Alonso J. J., “Automatic differentiation through the use of hyper-dual numbers for second derivatives”, Lecture Notes in Computational Science and Engineering book series (LNCSE), 87: 163-173, (2011).
  • [24] Fike, J. A., Alonso J. J., “Automatic differentiation through the use of hyper-dual numbers for second derivatives”, 6th International Conference on Automatic Differentiation, Fort Collins, CO, July 23, (2012).
  • [25] Pogorui, A. A., Rodriguez-Dagnino, R. M., Rodrigue-Said, R .D., “On the set of zeros of bihyperbolic polynomials”, Complex Variables and Elliptic Equations, 53(7): 685–690, (2008).
  • [26] Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P., The mathematics of Minkowski space-time with an introduction to commutative hypercomplex numbers, Birkhauser Verlag, Basel, Boston, Berlin, (2008).
  • [27] Olariu, S., Complex Numbers in n −dimensions, North-Holland Mathematics Studies, Elsevier, Amsterdam, Boston, (2002).
  • [28] Bilgin, M., Ersoy, S., “Algebraic properties of bihyperbolic numbers”, Advances in Applied Clifford Algebras, 30(1): 13, (2020).
  • [29] Apostolova, L. N., Krastev, K. I., Kiradjiev, B., “Hyperbolic double‐complex numbers”, AIP Conference Proceedings, 1184 (1): 193-198, (2009).
  • [30] Apostolova , L. N., Dimiev, S., Stoev, P., “Hyperbolic hypercomplex D-Bar operators, hyperbolic Cr-equations and harmonicity”, arXiv:1012.3420v1, (2010).
  • [31] Özdemir, M., “Introduction to hybrid numbers”, Advances in Applied Clifford Algebras, 28(1): 11, (2018).

A Study on Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers

Year 2021, Volume: 34 Issue: 1, 180 - 194, 01.03.2021
https://doi.org/10.35378/gujs.653906

Abstract

This work is intended to introduce the theories of dual-generalized complex and hyperbolicgeneralized complex numbers. The algebraic properties of these numbers are taken into consideration. Besides, dual-generalized complex and hyperbolic-generalized complex valued functions are defined and different matrix representations of these numbers are examined. Moreover, a remarkable classification are given for special cases and the set of complexgeneralized complex numbers are mentioned.

References

  • [1] Yaglom, I. M., Complex Numbers in Geometry, Academic Press, New York, (1968).
  • [2] Sobczyk, G., “The hyperbolic number plane”, The College Mathematics Journal, 26(4): 268-280, (1995).
  • [3] Fjelstad, P., “Extending special relativity via the perplex numbers”, American Journal of Physics, 54(5): 416-422 (1986).
  • [4] Study, E., Geometrie der Dynamen. Leipzig, (1903).
  • [5] Pennestrì, E., Stefanelli, R., “Linear algebra and numerical algorithms using dual numbers”, Multibody System Dynamics, 18(3): 323-344 (2007).
  • [6] Majernik, V., “Multicomponent number systems”, Acta Physica Polonica A, 90: 491-498, (1996).
  • [7] Harkin, A. A., Harkin, J. B., “Geometry of generalized complex numbers”, Mathematics Magazine, 77(2): 118-129, (2004).
  • [8] Cockle, J., “On a new imaginary in algebra”, Philosophical magazine, London-Dublin-Edinburgh, 34(226): 37-47, (1849).
  • [9] Kantor, I., Solodovnikov, A., Hypercomplex Numbers, Springer-Verlag, New York, (1989).
  • [10] Alfsmann, D., “On families of 2N-dimensional hypercomplex algebras suitable for digital signal processing”, 14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, (2006).
  • [11] Fjelstad, P., Sorin, G. Gal, “ n -dimensional hyperbolic complex numbers”, Advances in Applied Clifford Algebras, 8(1): 47-68, (1998).
  • [12] Price G. B., An introduction to multicomplex spaces and functions, New York: M. Dekker, (1991).
  • [13] Toyoshima H., “Computationally efficient bicomplex multipliers for digital signal processing”, IEICE Transactions on Information and Systems, 81(2): 236-238, (1998).
  • [14] Rochon, D., Shapiro, M., “On algebraic properties of bicomplex and hyperbolic numbers”, Analele Universitatii din Oradea. Fascicola Matematica, 11: 71-110, (2004).
  • [15] Cheng, H. H., Thompson, S., “Dual polynomials and complex dual numbers for analysis of spatial mechanisms”, Proc. of ASME 24th Biennial Mechanisms Conference, Irvine, CA, August,19-22, (1996).
  • [16] Cheng, H. H., Thompson, S., “Singularity analysis of spatial mechanisms using dual polynomials and complex dual numbers”, Journal of Mechanical Design, 121(2): 200–205, (1999).
  • [17] Messelmi, F., “Dual-complex numbers and their holomorphic functions”, hal-01114178, (2015).
  • [18] Akar, M., Yüce, S., Şahin, S., “On the dual hyperbolic numbers and the complex hyperbolic numbers”, Journal of Computer Science & Computational Mathematics, 8 (1): 1-6, (2018).
  • [19] Fike, J. A., “Numerically exact derivative calculations using hyper-dual numbers”, 3rd Annual Student Joint Workshop in Simulation-Based Engineering and Design, (2009).
  • [20] Fike, J. A., Alonso J. J., “The development of hyper-dual numbers for exact second- derivative calculations”, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, (2011).
  • [21] Fike, J. A., Jongsma, S., Alonso J. J., Weide E. Van Der, “Optimization with gradient and hessian information calculated using hyper-dual numbers”, 29th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, (2011).
  • [22] Cohen, A., Shoham, M., “Principle of transference-An extension to hyper-dual numbers”, Mechanism and Machine Theory, 125: 101-110, (2018).
  • [23] Fike, J. A., Alonso J. J., “Automatic differentiation through the use of hyper-dual numbers for second derivatives”, Lecture Notes in Computational Science and Engineering book series (LNCSE), 87: 163-173, (2011).
  • [24] Fike, J. A., Alonso J. J., “Automatic differentiation through the use of hyper-dual numbers for second derivatives”, 6th International Conference on Automatic Differentiation, Fort Collins, CO, July 23, (2012).
  • [25] Pogorui, A. A., Rodriguez-Dagnino, R. M., Rodrigue-Said, R .D., “On the set of zeros of bihyperbolic polynomials”, Complex Variables and Elliptic Equations, 53(7): 685–690, (2008).
  • [26] Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P., The mathematics of Minkowski space-time with an introduction to commutative hypercomplex numbers, Birkhauser Verlag, Basel, Boston, Berlin, (2008).
  • [27] Olariu, S., Complex Numbers in n −dimensions, North-Holland Mathematics Studies, Elsevier, Amsterdam, Boston, (2002).
  • [28] Bilgin, M., Ersoy, S., “Algebraic properties of bihyperbolic numbers”, Advances in Applied Clifford Algebras, 30(1): 13, (2020).
  • [29] Apostolova, L. N., Krastev, K. I., Kiradjiev, B., “Hyperbolic double‐complex numbers”, AIP Conference Proceedings, 1184 (1): 193-198, (2009).
  • [30] Apostolova , L. N., Dimiev, S., Stoev, P., “Hyperbolic hypercomplex D-Bar operators, hyperbolic Cr-equations and harmonicity”, arXiv:1012.3420v1, (2010).
  • [31] Özdemir, M., “Introduction to hybrid numbers”, Advances in Applied Clifford Algebras, 28(1): 11, (2018).
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Nurten Gürses 0000-0001-8407-854X

Gülsüm Yeliz Şentürk 0000-0002-8647-1801

Salim Yüce 0000-0002-8296-6495

Publication Date March 1, 2021
Published in Issue Year 2021 Volume: 34 Issue: 1

Cite

APA Gürses, N., Şentürk, G. Y., & Yüce, S. (2021). A Study on Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers. Gazi University Journal of Science, 34(1), 180-194. https://doi.org/10.35378/gujs.653906
AMA Gürses N, Şentürk GY, Yüce S. A Study on Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers. Gazi University Journal of Science. March 2021;34(1):180-194. doi:10.35378/gujs.653906
Chicago Gürses, Nurten, Gülsüm Yeliz Şentürk, and Salim Yüce. “A Study on Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers”. Gazi University Journal of Science 34, no. 1 (March 2021): 180-94. https://doi.org/10.35378/gujs.653906.
EndNote Gürses N, Şentürk GY, Yüce S (March 1, 2021) A Study on Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers. Gazi University Journal of Science 34 1 180–194.
IEEE N. Gürses, G. Y. Şentürk, and S. Yüce, “A Study on Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers”, Gazi University Journal of Science, vol. 34, no. 1, pp. 180–194, 2021, doi: 10.35378/gujs.653906.
ISNAD Gürses, Nurten et al. “A Study on Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers”. Gazi University Journal of Science 34/1 (March 2021), 180-194. https://doi.org/10.35378/gujs.653906.
JAMA Gürses N, Şentürk GY, Yüce S. A Study on Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers. Gazi University Journal of Science. 2021;34:180–194.
MLA Gürses, Nurten et al. “A Study on Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers”. Gazi University Journal of Science, vol. 34, no. 1, 2021, pp. 180-94, doi:10.35378/gujs.653906.
Vancouver Gürses N, Şentürk GY, Yüce S. A Study on Dual-Generalized Complex and Hyperbolic-Generalized Complex Numbers. Gazi University Journal of Science. 2021;34(1):180-94.