Research Article
BibTex RIS Cite
Year 2021, Volume: 34 Issue: 2, 406 - 421, 01.06.2021
https://doi.org/10.35378/gujs.752304

Abstract

References

  • [1] Sahoo, S.K., Parveen, S., Panda, J.J., “The Present and Future of Nanotechnology in Human Health Care”, Nanomedicine, 3(1): 20-31, (2007).
  • [2] Kulkarni, N., Muddapur, U., “Biosynthesis of Metal Nanoparticles: A Review”, Journal of Nanotechnology, 510246: 1–8, (2014).
  • [3] Mohanpuria, P., Rana, N.K., Yadav, S.K., “Biosynthesis of Nanoparticles: Technological Concepts and Future Applications”, Journal of Nanoparticle Research, 10(3): 507-517, (2008).
  • [4] Rai, M., Yadav, A., Gade, A., “Current Trends in Phytosynthesis of Metal Nanoparticles”, Critical Reviews in Biotechnology, 29(1): 78-78, (2009).
  • [5] Wang, Y., He, X., Wang, K., Zhang, X., Tan, W., “Barbated Skullcup Herb Extract-Mediated Biosynthesis of Gold Nanoparticles and Its Primary Application in Electrochemistry”, Colloids and Surfaces B: Biointerfaces, 73(1): 75-79, (2009).
  • [6] Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., Thangamani, S., “Synthesis of Silver Nanoparticles Using Leaves of Catharanthus Roseus Linn. G. Don and Their Antiplasmodial Activities”, Asian Pacific Journal of Tropical Biomedicine, 2(7): 574-580, (2012).
  • [7] Liang, T., Yue, W., Li, Q., “Comparison of The Phenolic Content and Antioxidant Activities of Apocynum Venetum L.(Luo-Bu-Ma) and Two of Its Alternative Species”, International Journal of Molecular Sciences, 11(11): 4452-4464, (2010).
  • [8] Satyavani, K., Gurudeeban, S., Ramanathan, T., Balasubramanian, T., “Biomedical Potential of Silver Nanoparticles Synthesized From Calli Cells of Citrullus Colocynthis (L.) Schrad”, Journal of Nanobiotechnology, 9(1): 43, (2011).
  • [9] Parida, U.K., Bindhani, B.K., Nayak, P., “Green Synthesis and Characterization of Gold Nanoparticles Using Onion (Allium Cepa) Extract”, World Journal of Nano Science and Engineering, 1(04): 93, (2011).
  • [10] Shabestrian H., Homayouni-Tabrizi, M., Soltani, M., Namvar, F., Azizi, S., Mohamad, R., Shabestarian, H., “Green Synthesis of Gold Nanoparticles Using Sumac Aqueous Extract and Their Antioxidant Activity”, Materials Research, 20(1): 264-270, (2017).
  • [11] Das, R.K., Gogoi, N., Babu, P.J., Sharma, P., Mahanta, C., Bora, U., “The Synthesis of Gold Nanoparticles Using Amaranthus Spinosus Leaf Extract and Study of Their Optical Properties”, Advances in Materials Physics and Chemistry, 2: 275–281, (2012).
  • [12] Islam, N.U., Amin, R., Shahid, M., Amin, M., Zaib, S., Iqbal, J., “A Multi-Target Therapeutic Potential of Prunus Domestica Gum Stabilized Nanoparticles Exhibited Prospective Anticancer, Antibacterial, Urease-İnhibition, Anti-İnflammatory and Analgesic Properties”, BMC Complementary and Alternative Medicine, 17(1): 276-293, (2017).
  • [13] Singh, A.K., Srivastava, O.N., “One-Step Green Synthesis of Gold Nanoparticles Using Black Cardamom and Effect of pH on Its Synthesis”, Nanoscale Research Letters, 10(1): 353, (2015).
  • [14] Parida, U., Biswal, K., Bindhani, B., Nayak, P., “Green Synthesis and Characterization of Gold Nanoparticles Using Elettaria Cardamomum L. Extract”, World Applied Sciences Journal (WASJ), 28: 962-967, (2013).
  • [15] Abdel-Raouf, N., Al-Enazi, N.M., Ibraheem, I.B., “Green Biosynthesis of Gold Nanoparticles Using Galaxaura Elongata and Characterization of Their Antibacterial Activity”, Arabian Journal of Chemistry, 10: 3029-3039, (2017).
  • [16] Song, J. Y., Jang, H. K., Kim, B. S., “Biological Synthesis of Gold Nanoparticles Using Magnolia Kobus and Diopyros Kaki Leaf Extracts”, Process Biochemistry, 44(10): 1133-1138, (2009).
  • [17] Yang, N., WeiHong, L., Hao, L., “Biosynthesis of Au Nanoparticles Using Agricultural Waste Mango Peel Extract and Its in Vitro Cytotoxic Effect on Two Normal Cells”, Materials Letters, 134: 67-70, (2014).
  • [18] Khalil, M.M., Ismail, E.H., El-Magdoub, F., “Biosynthesis of Au Nanoparticles Using Olive Leaf Extract: 1st Nano Updates”, Arabian Journal of Chemistry, 5(4): 431-437, (2012).
  • [19] Islam, N.U., Jalil, K., Shahid, M., Muhammad, N., Rauf, A., “Pistacia Integerrima Gall Extract Mediated Green Synthesis of Gold Nanoparticles and Their Biological Activities”, Arabian Journal of Chemistry, 12(8): 2310-2319, (2019).
  • [20] Islam, N.U., Jalil, K., Shahid, M., Rauf, A., Muhammad, N., Khan, A., Khan, M. A., “Green Synthesis and Biological Activities of Gold Nanoparticles Functionalized with Salix Alba”, Arabian Journal of Chemistry, 3(8): 1-42, (2015).
  • [21] Tahir, K., Nazir, S., Li, B., Khan, A.U., Khan, Z. U. H., Gong, P.Y., Ahmad, A., “Nerium Oleander Leaves Extract Mediated Synthesis of Gold Nanoparticles and Its Antioxidant Activity”, Materials Letters, 156: 198-201, (2015).
  • [22] Novaković, M.M., Vučković, I.M., Janaćković, P.T., Soković, M., Filipovic, A., Tešević, V., Milosavljević, S.M., “Chemical Composition, Antibacterial and Antifungal Activity of The Essential Oils of Cotinus Coggygria From Serbia”, Journal of the Serbian Chemical Society, 72(11): 1045-1051,
  • [23] Matić, S., Stanić, S., Bogojević, D., Vidaković, M., Grdović, N., Arambašić, J., Mladenović, M., “Extract of The Plant Cotinus Coggygria Scop. Attenuates Pyrogallol-İnduced Hepatic Oxidative Stress İn Wistar Rats”, Canadian Journal of Physiology and Pharmacology, 89(7): 401-411, (2011).
  • [24] Demirci, B., Demirci, F., Başer, K. H. C., “Composition of The Essential Oil of Cotinus Coggygria Scop. From Turkey”, Flavour and Fragrance Journal, 18(1): 43-44, (2003).
  • [25] Marčetić, M., Božić, D., Milenković, M., Malešević, N., Radulović, S., Kovačević, N., “Antimicrobial, Antioxidant and Anti‐İnflammatory Activity of Young Shoots of The Smoke Tree, Cotinus Coggygria Scop”, Phytotherapy Research, 27(11): 1658-1663, (2013).
  • [26] Šavikin, K., Zdunić, G., Janković, T., Stanojković, T., Juranić, Z., Menković, N., “In Vitro Cytotoxic and Antioxidative Activity of Cornus Mas and Cotinus Coggygria”, Natural Product Research, 23(18): 1731-1739, (2009).
  • [27] Akkol, E.K., Göger, F., Koşar, M., Başer, K.H.C.,“Phenolic Composition and Biological Activities of Salvia Halophila and Salvia Virgata from Turkey”, Food Chemistry, 108(3): 942-949, (2008).
  • [28] Kano, M., Takayanagi, T., Harada, K., Makino, K., Ishikawa, F., “Antioxidative Activity of Anthocyanins from Purple Sweet Potato, Ipomoera Batatas Cultivar Ayamurasaki”, Bioscience, Biotechnology and Biochemistry, 69(5): 979-988, (2005).
  • [29] Dehpour, A.A., Ebrahimzadeh, M.A., Fazel, N.S., Mohammad, N.S., “Antioxidant Activity of The Methanol Extract of Ferula Assafoetida and Its Essential Oil Composition”, Grasas y aceites, 60(4): 405-412, (2009).
  • [30] Perez, C., Pauli, M., Bazerque, P., “An antibiotic assay by the agar well diffusion method”, Acta Biologiae et Medicinae Experimentalis, 15(1): 113-115, (1990).
  • [31] Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., Schultz, S., “Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles”, The Journal of Chemical Physics, 116(15): 6755-6759, (2002).
  • [32] Armendariz, V., Herrera, I., Jose-yacaman, M., Troiani, H., Santiago, P., Gardea-Torresdey, J.L., “Size Controlled Gold Nanoparticle Formation by Avena Sativa Biomass: Use of Plants in Nanobiotechnology”, Journal of Nanoparticle Research, 6(4): 377-382, (2004).
  • [33] Philip, D., “Biosynthesis of Au, Ag and Au–Ag Nanoparticles Using Edible Mushroom Extract”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(2): 374-381, (2009).
  • [34] Paul, B., Tiwari, A., “A Brief Review on The Application of Gold Nanoparticles as Sensors in Multi Dimensional Aspects”, IOSR Journal of Environmental Science, Toxicology and Food Technology, 1: 1-7, (2015).
  • [35] Link, S., El-Sayed, M.A., “Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals”, International Reviews in Physical Chemistry, 19(3): 409-453, (2000).
  • [36] Liao, H., Wen, W., Wong, G.K., “Photoluminescence from Au Nanoparticles Embedded in Au: Oxide Composite Films”, The Journal of the Optical Society of America B, 23(12): 2518-2521, (2006).
  • [37] Varnavski, O., Ispasoiu, R.G., Balogh, L., Tomalia, D., Goodson, T., “Ultrafast Time-Resolved Photoluminescence from Novel Metal–Dendrimer Nanocomposites”, The Journal of Chemical Physics, 114(5): 1962-1965, (2001).
  • [38] Eichelbaum, M., Schmidt, B.E., Ibrahim, H., Rademann, K., “Three-Photon-Induced Luminescence of Gold Nanoparticles Embedded In and Located on The Surface of Glassy Nanolayers”, Nanotechnology, 18(35): 355702, (2007).
  • [39] Boruah, S.K., Boruah, P.K., Sarma, P., Medhi, C., Medhi, O.K., “Green Synthesis of Gold Nanoparticles Using Camellia Sinensis and Kinetics of The Reaction”, Advanced Materials Letters, 3(6): 481-486, (2012).
  • [40] Ghorbani, P., Soltani, M., Homayouni-Tabrizi, M., Namvar, F., Azizi, S., Mohammad, R., Moghaddam, A.B., “Sumac Silver Novel Biodegradable Nano Composite for Bio-Medical Application: Antibacterial Activity”, Molecules, 20(7): 12946-12958, (2015).

Greener Approach to Synthesis of Steady Nano-sized Gold with the Aqueous Concentrate of Cotinus Coggygria Scop. Leaves

Year 2021, Volume: 34 Issue: 2, 406 - 421, 01.06.2021
https://doi.org/10.35378/gujs.752304

Abstract

There is a growing commercial attraction for nanoparticles because of their widespread feasibility in various fields for instance electronics, textiles, chemistry, medicine, energy and catalysis. This investigation describes an environmentally benign, cheap, and simple technique for biosynthesis of CCS-AuNPs utilizing the CCSL aqueous concentrate as a covering and reducing material. Various parameters influencing the reduction of Au3+ to Au0 were studied and the optimum conditions found as follows: chloroauric acid solution: 1 mM, CCSL aqueous extract: 20 g dry leaf /250 mL distilled water, volume proportion of chloroauric acid solution to CCSL aqueous solution: 24.8/0.2, pH: 3, response temperature: 60°C, and response time: 15 min. By stirring the reaction combination at 60°C for 10-15 minutes, the CCSL aqueous extract reduced Au3+ ions to Au0 and production of CCS-AuNPs was observed with the change of CCSL extract colour from light yellow to dark purple. Produced CCS-AuNPs were well defined by Ultraviolet-visible (UV-vis) absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR spectroscopy), and Transmission electron microscopy (TEM). In the absorption spectrum, a symmetrical and prominent band observed in 500-600 nm wavelength range indicated that CCS-AuNPs formed. Synthesized gold nanoparticles at the optimum conditions are spherical (average particle size~17 nm) and remained stable for four months. Gold nanoparticles showed two fluorescent emission peaks at 444 nm and 704 nm whenever induced at 350 nm. Synthesized CCS-AuNPs showed lower antibacterial effect than plant extract.

References

  • [1] Sahoo, S.K., Parveen, S., Panda, J.J., “The Present and Future of Nanotechnology in Human Health Care”, Nanomedicine, 3(1): 20-31, (2007).
  • [2] Kulkarni, N., Muddapur, U., “Biosynthesis of Metal Nanoparticles: A Review”, Journal of Nanotechnology, 510246: 1–8, (2014).
  • [3] Mohanpuria, P., Rana, N.K., Yadav, S.K., “Biosynthesis of Nanoparticles: Technological Concepts and Future Applications”, Journal of Nanoparticle Research, 10(3): 507-517, (2008).
  • [4] Rai, M., Yadav, A., Gade, A., “Current Trends in Phytosynthesis of Metal Nanoparticles”, Critical Reviews in Biotechnology, 29(1): 78-78, (2009).
  • [5] Wang, Y., He, X., Wang, K., Zhang, X., Tan, W., “Barbated Skullcup Herb Extract-Mediated Biosynthesis of Gold Nanoparticles and Its Primary Application in Electrochemistry”, Colloids and Surfaces B: Biointerfaces, 73(1): 75-79, (2009).
  • [6] Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., Thangamani, S., “Synthesis of Silver Nanoparticles Using Leaves of Catharanthus Roseus Linn. G. Don and Their Antiplasmodial Activities”, Asian Pacific Journal of Tropical Biomedicine, 2(7): 574-580, (2012).
  • [7] Liang, T., Yue, W., Li, Q., “Comparison of The Phenolic Content and Antioxidant Activities of Apocynum Venetum L.(Luo-Bu-Ma) and Two of Its Alternative Species”, International Journal of Molecular Sciences, 11(11): 4452-4464, (2010).
  • [8] Satyavani, K., Gurudeeban, S., Ramanathan, T., Balasubramanian, T., “Biomedical Potential of Silver Nanoparticles Synthesized From Calli Cells of Citrullus Colocynthis (L.) Schrad”, Journal of Nanobiotechnology, 9(1): 43, (2011).
  • [9] Parida, U.K., Bindhani, B.K., Nayak, P., “Green Synthesis and Characterization of Gold Nanoparticles Using Onion (Allium Cepa) Extract”, World Journal of Nano Science and Engineering, 1(04): 93, (2011).
  • [10] Shabestrian H., Homayouni-Tabrizi, M., Soltani, M., Namvar, F., Azizi, S., Mohamad, R., Shabestarian, H., “Green Synthesis of Gold Nanoparticles Using Sumac Aqueous Extract and Their Antioxidant Activity”, Materials Research, 20(1): 264-270, (2017).
  • [11] Das, R.K., Gogoi, N., Babu, P.J., Sharma, P., Mahanta, C., Bora, U., “The Synthesis of Gold Nanoparticles Using Amaranthus Spinosus Leaf Extract and Study of Their Optical Properties”, Advances in Materials Physics and Chemistry, 2: 275–281, (2012).
  • [12] Islam, N.U., Amin, R., Shahid, M., Amin, M., Zaib, S., Iqbal, J., “A Multi-Target Therapeutic Potential of Prunus Domestica Gum Stabilized Nanoparticles Exhibited Prospective Anticancer, Antibacterial, Urease-İnhibition, Anti-İnflammatory and Analgesic Properties”, BMC Complementary and Alternative Medicine, 17(1): 276-293, (2017).
  • [13] Singh, A.K., Srivastava, O.N., “One-Step Green Synthesis of Gold Nanoparticles Using Black Cardamom and Effect of pH on Its Synthesis”, Nanoscale Research Letters, 10(1): 353, (2015).
  • [14] Parida, U., Biswal, K., Bindhani, B., Nayak, P., “Green Synthesis and Characterization of Gold Nanoparticles Using Elettaria Cardamomum L. Extract”, World Applied Sciences Journal (WASJ), 28: 962-967, (2013).
  • [15] Abdel-Raouf, N., Al-Enazi, N.M., Ibraheem, I.B., “Green Biosynthesis of Gold Nanoparticles Using Galaxaura Elongata and Characterization of Their Antibacterial Activity”, Arabian Journal of Chemistry, 10: 3029-3039, (2017).
  • [16] Song, J. Y., Jang, H. K., Kim, B. S., “Biological Synthesis of Gold Nanoparticles Using Magnolia Kobus and Diopyros Kaki Leaf Extracts”, Process Biochemistry, 44(10): 1133-1138, (2009).
  • [17] Yang, N., WeiHong, L., Hao, L., “Biosynthesis of Au Nanoparticles Using Agricultural Waste Mango Peel Extract and Its in Vitro Cytotoxic Effect on Two Normal Cells”, Materials Letters, 134: 67-70, (2014).
  • [18] Khalil, M.M., Ismail, E.H., El-Magdoub, F., “Biosynthesis of Au Nanoparticles Using Olive Leaf Extract: 1st Nano Updates”, Arabian Journal of Chemistry, 5(4): 431-437, (2012).
  • [19] Islam, N.U., Jalil, K., Shahid, M., Muhammad, N., Rauf, A., “Pistacia Integerrima Gall Extract Mediated Green Synthesis of Gold Nanoparticles and Their Biological Activities”, Arabian Journal of Chemistry, 12(8): 2310-2319, (2019).
  • [20] Islam, N.U., Jalil, K., Shahid, M., Rauf, A., Muhammad, N., Khan, A., Khan, M. A., “Green Synthesis and Biological Activities of Gold Nanoparticles Functionalized with Salix Alba”, Arabian Journal of Chemistry, 3(8): 1-42, (2015).
  • [21] Tahir, K., Nazir, S., Li, B., Khan, A.U., Khan, Z. U. H., Gong, P.Y., Ahmad, A., “Nerium Oleander Leaves Extract Mediated Synthesis of Gold Nanoparticles and Its Antioxidant Activity”, Materials Letters, 156: 198-201, (2015).
  • [22] Novaković, M.M., Vučković, I.M., Janaćković, P.T., Soković, M., Filipovic, A., Tešević, V., Milosavljević, S.M., “Chemical Composition, Antibacterial and Antifungal Activity of The Essential Oils of Cotinus Coggygria From Serbia”, Journal of the Serbian Chemical Society, 72(11): 1045-1051,
  • [23] Matić, S., Stanić, S., Bogojević, D., Vidaković, M., Grdović, N., Arambašić, J., Mladenović, M., “Extract of The Plant Cotinus Coggygria Scop. Attenuates Pyrogallol-İnduced Hepatic Oxidative Stress İn Wistar Rats”, Canadian Journal of Physiology and Pharmacology, 89(7): 401-411, (2011).
  • [24] Demirci, B., Demirci, F., Başer, K. H. C., “Composition of The Essential Oil of Cotinus Coggygria Scop. From Turkey”, Flavour and Fragrance Journal, 18(1): 43-44, (2003).
  • [25] Marčetić, M., Božić, D., Milenković, M., Malešević, N., Radulović, S., Kovačević, N., “Antimicrobial, Antioxidant and Anti‐İnflammatory Activity of Young Shoots of The Smoke Tree, Cotinus Coggygria Scop”, Phytotherapy Research, 27(11): 1658-1663, (2013).
  • [26] Šavikin, K., Zdunić, G., Janković, T., Stanojković, T., Juranić, Z., Menković, N., “In Vitro Cytotoxic and Antioxidative Activity of Cornus Mas and Cotinus Coggygria”, Natural Product Research, 23(18): 1731-1739, (2009).
  • [27] Akkol, E.K., Göger, F., Koşar, M., Başer, K.H.C.,“Phenolic Composition and Biological Activities of Salvia Halophila and Salvia Virgata from Turkey”, Food Chemistry, 108(3): 942-949, (2008).
  • [28] Kano, M., Takayanagi, T., Harada, K., Makino, K., Ishikawa, F., “Antioxidative Activity of Anthocyanins from Purple Sweet Potato, Ipomoera Batatas Cultivar Ayamurasaki”, Bioscience, Biotechnology and Biochemistry, 69(5): 979-988, (2005).
  • [29] Dehpour, A.A., Ebrahimzadeh, M.A., Fazel, N.S., Mohammad, N.S., “Antioxidant Activity of The Methanol Extract of Ferula Assafoetida and Its Essential Oil Composition”, Grasas y aceites, 60(4): 405-412, (2009).
  • [30] Perez, C., Pauli, M., Bazerque, P., “An antibiotic assay by the agar well diffusion method”, Acta Biologiae et Medicinae Experimentalis, 15(1): 113-115, (1990).
  • [31] Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., Schultz, S., “Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles”, The Journal of Chemical Physics, 116(15): 6755-6759, (2002).
  • [32] Armendariz, V., Herrera, I., Jose-yacaman, M., Troiani, H., Santiago, P., Gardea-Torresdey, J.L., “Size Controlled Gold Nanoparticle Formation by Avena Sativa Biomass: Use of Plants in Nanobiotechnology”, Journal of Nanoparticle Research, 6(4): 377-382, (2004).
  • [33] Philip, D., “Biosynthesis of Au, Ag and Au–Ag Nanoparticles Using Edible Mushroom Extract”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(2): 374-381, (2009).
  • [34] Paul, B., Tiwari, A., “A Brief Review on The Application of Gold Nanoparticles as Sensors in Multi Dimensional Aspects”, IOSR Journal of Environmental Science, Toxicology and Food Technology, 1: 1-7, (2015).
  • [35] Link, S., El-Sayed, M.A., “Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals”, International Reviews in Physical Chemistry, 19(3): 409-453, (2000).
  • [36] Liao, H., Wen, W., Wong, G.K., “Photoluminescence from Au Nanoparticles Embedded in Au: Oxide Composite Films”, The Journal of the Optical Society of America B, 23(12): 2518-2521, (2006).
  • [37] Varnavski, O., Ispasoiu, R.G., Balogh, L., Tomalia, D., Goodson, T., “Ultrafast Time-Resolved Photoluminescence from Novel Metal–Dendrimer Nanocomposites”, The Journal of Chemical Physics, 114(5): 1962-1965, (2001).
  • [38] Eichelbaum, M., Schmidt, B.E., Ibrahim, H., Rademann, K., “Three-Photon-Induced Luminescence of Gold Nanoparticles Embedded In and Located on The Surface of Glassy Nanolayers”, Nanotechnology, 18(35): 355702, (2007).
  • [39] Boruah, S.K., Boruah, P.K., Sarma, P., Medhi, C., Medhi, O.K., “Green Synthesis of Gold Nanoparticles Using Camellia Sinensis and Kinetics of The Reaction”, Advanced Materials Letters, 3(6): 481-486, (2012).
  • [40] Ghorbani, P., Soltani, M., Homayouni-Tabrizi, M., Namvar, F., Azizi, S., Mohammad, R., Moghaddam, A.B., “Sumac Silver Novel Biodegradable Nano Composite for Bio-Medical Application: Antibacterial Activity”, Molecules, 20(7): 12946-12958, (2015).
There are 40 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

M. U. Ozgur 0000-0002-6398-3871

Ebru Ortadoğulu 0000-0002-3125-0884

Burak Erdemir 0000-0003-4671-8205

Publication Date June 1, 2021
Published in Issue Year 2021 Volume: 34 Issue: 2

Cite

APA Ozgur, M. U., Ortadoğulu, E., & Erdemir, B. (2021). Greener Approach to Synthesis of Steady Nano-sized Gold with the Aqueous Concentrate of Cotinus Coggygria Scop. Leaves. Gazi University Journal of Science, 34(2), 406-421. https://doi.org/10.35378/gujs.752304
AMA Ozgur MU, Ortadoğulu E, Erdemir B. Greener Approach to Synthesis of Steady Nano-sized Gold with the Aqueous Concentrate of Cotinus Coggygria Scop. Leaves. Gazi University Journal of Science. June 2021;34(2):406-421. doi:10.35378/gujs.752304
Chicago Ozgur, M. U., Ebru Ortadoğulu, and Burak Erdemir. “Greener Approach to Synthesis of Steady Nano-Sized Gold With the Aqueous Concentrate of Cotinus Coggygria Scop. Leaves”. Gazi University Journal of Science 34, no. 2 (June 2021): 406-21. https://doi.org/10.35378/gujs.752304.
EndNote Ozgur MU, Ortadoğulu E, Erdemir B (June 1, 2021) Greener Approach to Synthesis of Steady Nano-sized Gold with the Aqueous Concentrate of Cotinus Coggygria Scop. Leaves. Gazi University Journal of Science 34 2 406–421.
IEEE M. U. Ozgur, E. Ortadoğulu, and B. Erdemir, “Greener Approach to Synthesis of Steady Nano-sized Gold with the Aqueous Concentrate of Cotinus Coggygria Scop. Leaves”, Gazi University Journal of Science, vol. 34, no. 2, pp. 406–421, 2021, doi: 10.35378/gujs.752304.
ISNAD Ozgur, M. U. et al. “Greener Approach to Synthesis of Steady Nano-Sized Gold With the Aqueous Concentrate of Cotinus Coggygria Scop. Leaves”. Gazi University Journal of Science 34/2 (June 2021), 406-421. https://doi.org/10.35378/gujs.752304.
JAMA Ozgur MU, Ortadoğulu E, Erdemir B. Greener Approach to Synthesis of Steady Nano-sized Gold with the Aqueous Concentrate of Cotinus Coggygria Scop. Leaves. Gazi University Journal of Science. 2021;34:406–421.
MLA Ozgur, M. U. et al. “Greener Approach to Synthesis of Steady Nano-Sized Gold With the Aqueous Concentrate of Cotinus Coggygria Scop. Leaves”. Gazi University Journal of Science, vol. 34, no. 2, 2021, pp. 406-21, doi:10.35378/gujs.752304.
Vancouver Ozgur MU, Ortadoğulu E, Erdemir B. Greener Approach to Synthesis of Steady Nano-sized Gold with the Aqueous Concentrate of Cotinus Coggygria Scop. Leaves. Gazi University Journal of Science. 2021;34(2):406-21.