Research Article
BibTex RIS Cite
Year 2022, Volume: 35 Issue: 4, 1318 - 1331, 01.12.2022
https://doi.org/10.35378/gujs.947687

Abstract

References

  • Ayhan, H., Ayhan, F., “Water based PHEMA hydrogels for controlled drug delivery”, Turkish Journal of Biochemistry, 43: 228-239, (2018).
  • Cheaburu, C. N., Karasulu, H. Y., Yilmaz, O., “Chapter 13 - Nanoscaled dispersed systems used in drug-delivery applications”, C. Vasile (Ed.), Polymeric Nanomaterials in Nanotherapeutics, Elsevier, 437-468, (2019).
  • Peppas, A., Van Blarcom, S., “Hydrogel-based biosensors and sensing devices for drug delivery”, Journal of Control Release, 240: 142-150, (2016).
  • Balamurugan, D., Murali, M., Venkatesan, A., Nagasamy, V. D., “Hydrogel systems: Their classification, preparation and biomedical applications”, International Journal of Pharmaceutical Research, 12: 180-187, (2020).
  • Wei, W., Li, J., Qi, X., Zhong, Y., Zuo, G., Pan, X., Dong, W., “Synthesis and characterization of a multi-sensitive polysaccharide hydrogel for drug delivery”, Carbohydrate Polymers, 177: 275-283, (2017).
  • George, J., Hsu, C. C., Nguyen, Ye, H., Cui, Z., “Neural tissue engineering with structured hydrogels in CNS models and therapies”, Biotechnology Advances, 42: 107370, (2020).
  • Navaei, A., Saini, H., Christenson, W., Sullivan, R. T., Ros, R., Nikkhah, M., “Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs”, Acta Biomaterialia, 41: 133-146, (2016).
  • Kakuta, T., Takashima, Y., Nakahata, M., Otsubo, M., Yamaguchi, H., Harada, A., “Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups”, Advanced Materials, 25: 2849-2853, (2013).
  • Miyamae, K., Nakahata, M., Takashima, Y., Harada, A., “Self-healing, expansion-contraction and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions”, Angewandte Chemie, 127: 9112-9115, (2015).
  • Oliveira, I. M., Gonçalves, C., Shin, M. E., Lee, S., Reis, R. L., Khang, G., Oliveira, J. M., “Enzymatically crosslinked tyramine-gellan gum hydrogels as drug delivery system for rheumatoid arthritis treatment”, Drug Delivery and Translational Research: An Official Journal of the Controlled Release Society, 11(3): 1288-1300, (2020).
  • Torres-Luna, C., Fan, X., Domszy, R., Hu, N., Wang, N. S., Yang, A., “Hydrogel-based ocular drug delivery systems for hydrophobic drugs”, European Journal of Pharmaceutical Sciences, 154: 105503, (2020).
  • Antipova, C., Parunova, Y., Vishnevskaya, M., Grigorev, T., Lukanina, K., Krasheninnikov, S., Gotovtsev, P., “Flexible electroconductive hydrogel for biosensors and biofuel cells application”, Proceedings of the 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, 513-517, (2019).
  • Guo, X., Li, Y., Li, Y., Ye, Z., Zhang, J., Zhu, T., Li, F., “An L012@PAni-PAAm hydrogel composite based-electrochemiluminescence biosensor for in situ detection of H2O2 released from cardiomyocytes”, Electrochimica Acta, 354: 136763, (2020).
  • Zavrel, V., Stol, M. “p(HEMA) composite as allografting material during therapy of periodontal disease: three case reports”, Biomaterials, 14: 1109–1112, (1993).
  • Buxadera-Palomero, J., Fricke, K., Reuter, S., Gil, F.J., Rodriguez, D., Canal, C. “One-Step liquid phase polymerization of HEMA by atmospheric-pressure plasma discharges for Ti dental implants”, Applied Sciences, 11: 662, (2021).
  • Duruk, G., Gürbüz, T. “The relationship between periodontal health and dental caries/restoration in children: A review of the literature”, Journal of Dental Faculty of Ataturk University, 28(3): 421-428, (2018).
  • Passos, M. F., Dias, D. R. C., Bastos, G. N. T., Jardini, A. L., Benatti, A. C. B., Dias, C. G., Maciel Filho, R. “pHEMA hydrogels”, Journal of Thermal Analysis and Calorimetry, 125: 361-368, (2016).
  • Andrade-Vivero, P., Fernandez-Gabriel, E., Alvarez-Lorenzo, C., Concheiro, A., “Improving the loading and release of NSAIDs from pHEMA hydrogels by copolymerization with functionalized monomers”, Journal of Pharmaceutical Sciences, 96: 802-813, (2007).
  • Hrioua, A., Loudiki, A., Farahi, A., Bakasse, M., Lahrich, S., Saqrane, S., El Mhammedi, M. A., “Recent advances in electrochemical sensors for amoxicillin detection in biological and environmental samples”, Bioelectrochemistry, 137: 107687, (2021).
  • Fallahzadeh, R. A., Mahvi, A. H., Meybodi, M. N., Ghaneian, M. T., Dalvand, A., Salmani, M. H., Ehrampoush, M. H., “Application of photo-electro oxidation process for amoxicillin removal from aqueous solution: Modeling and toxicity evaluation”, Korean Journal of Chemical Engineering, 36: 713-721, (2019).
  • Iqbal, M. S., Akmal, M. A., “A simple method for simultaneous determination of some organic liquids in in-process materials and effluents produced in the manufacture of amoxicillin and ampicillin”, Environmental Monitoring and Assessment, 151: 397-400, (2009).
  • Morse, A., “Fate and effect of amoxicillin in space and terrestrial water reclamation systems”, Phd. Thesis, Texas Tech University Institute of Science and Technology, Texas, 158-164, (2003).
  • Johnson, A., Kong, F., Miao, S., Lin, H.T.V., Thomas S., Huang, Y.C., Kong, Z. “Therapeutic effects of antibiotics loaded cellulose nanofiber and κ-carrageenan oligosaccharide composite hydrogels for periodontitis treatment”, Scientific Reports, 10: 18037, (2020).
  • Di Benedetto, A., Gigante, I., Colucci, S., Grano, M. “Periodontal disease: Linking the primary inflammation to bone loss”, Journal of Immunology Research, 503754: 1–7, (2013).
  • Saini, R., Marawar, P. P., Shete, S., Saini, S. “Periodontitis, a true infection”, Journal of Global Infectious Disease 1:149–150, (2009)
  • Tariq, M., Iqbal, Z., Ali, J., Baboota, S., Talegaonkar S., Ahmad Z., Sahni, J. “Treatment modalities and evaluation models for periodontitis”, International Journal of Pharmaceutical Investigation 2: 106–122, (2012)
  • Sanjay, S. T., Zhou, W., Dou, M., Tavakoli, H., Ma, L., Xu, F., Li, X., “Recent advances of controlled drug delivery using microfluidic platforms”, Advanced Drug Delivery Reviews, 128: 3-28, (2018).
  • Nidhi, P., Anamika, C., Twinkle, S., Mehul, S., Hitesh, J., Umesh, U., “Controlled drug delivery system: A review”, Indo American Journal of Pharmaceutical Sciences, 3: 227-233, (2016).
  • Joshi, D., Garg, T., Goyal, A. K., Rath, G., “Advanced drug delivery approaches against periodontitis”, Drug Delivery, 23: 363–377, (2016).
  • Suhail, M., Hsieh, Y.H., Shao, Y.F., Minhas, M.U., Wu, P.C., “Formulation and in-vitro characterization of pH-responsive semi-interpenetrating polymer network hydrogels for controlled release of ketorolac tromethamine”, Gels, 7: 167, (2021).
  • Baliga, S., Muglikar, S., Kale, R., “Salivary pH: A diagnostic biomarker”, Journal of Indian Society of Periodontology, 17: 461–465, (2013).
  • Panda, N., Reddy A. V., Reddy, G. V. S., Panda, K., “Formulation design and in vitro evaluation of zolmitriptan immediate release tablets using primojel and AC-Di-Sol”, Journal of Pharmaceutical Sciences and Research, 7: 545-553, (2015).
  • Huang, C. W., Sun, Y. M., Huang, W. F., “Curing kinetics of the synthesis of poly(2-hydroxyethyl methacrylate) (PHEMA) with ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent”, Journal of Polymer Science Part A: Polymer Chemistry, 35: 1873-1889, (1997).
  • Vargün, E., Usanmaz, A., “Degradation of poly(2-hydroxyethyl methacrylate) obtained by radiation in aqueous solution”, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 47: 882–891, (2010).
  • Yıldırım, E., “Synthesis and characterization of poly (2-hydroxyethyl methacrylate) homopolymer at room temperature via reversible addition–fragmentation chain transfer (RAFT) polymerization Technique” Gazi University Journal of Science, 33: 22-29, (2020).
  • Dobic, S., Jovasevic, J., Vojisavljevic, M., Tomic, S., “Hemocompatibility and swelling studies of poly(2-hydroxyethyl methacrylate-co-itaconic acid-co-poly(ethylene glycol) dimethacrylate) hydrogels”, Hemijska Industrija, 65: 675-685, (2011).
  • Podkoscielna, B., Bartnicki, A., Gawdzik, B., “New crosslinked hydrogels derivatives of 2-hydroxyethyl methacrylate: Synthesis, modifications and properties”, Express Polymer Letters, 6: 759-771, (2012).
  • Wei, W., Hu, X., Qi, X., Yu, H., Liu, Y., Li, J., Zhang, J., Dong, W., “A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): Synthesis and characterization”, Colloids and Surfaces B: Biointerfaces, 125: 1-11, (2015).
  • Gibaldi, M., Feldman, S., “Establishment of sink conditions in dissolution rate determinations. Theoretical considerations and application to nondisintegrating dosage forms”, Journal of Pharmaceutical Sciences, 56: 1238-1242, (1967).
  • Huh, H. W., Zhao, L., Kim, S. Y., “Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer”, Carbohydrate Polymers, 126: 130-140, (2015).
  • Permanadewi, I., Kumoro, A. C., Wardhani, D. H., Aryanti, N., “Modelling of controlled drug release in gastrointestinal tract simulation”, Journal of Physics: Conference Series, 1295: 012063, (2019).

Drug Delivery Application of Poly (2-hydroxyethyl methacrylate)/Ethylene glycol Dimethacrylate Composite Hydrogel

Year 2022, Volume: 35 Issue: 4, 1318 - 1331, 01.12.2022
https://doi.org/10.35378/gujs.947687

Abstract

Hydrogels have become advantageous materials used in biomedical applications as catheter, soft contact lenses or drug carrying vehicle due to their advantageous features like biocompatibility, insoluble property in aqueous solutions, their resistance to environmental conditions like pH, temperature. Periodontitis is an inflammatory disease which leads to the loss of tissue attachment, gingival recession, tooth loss or periodontal pocket formation. In this study, it was aimed to develop antibiotic loaded hydrogels composed of HEMA and EGDMA for the possible treatment of periodontitis. The in vitro drug delivery characteristics were determined with amoxicillin, which was selected as a proper antibiotic sample for the treatment of periodontitis. In conclusion, the H1 named hydrogel sample was proven to have a possible performance as an amoxicillin reservoir. 

References

  • Ayhan, H., Ayhan, F., “Water based PHEMA hydrogels for controlled drug delivery”, Turkish Journal of Biochemistry, 43: 228-239, (2018).
  • Cheaburu, C. N., Karasulu, H. Y., Yilmaz, O., “Chapter 13 - Nanoscaled dispersed systems used in drug-delivery applications”, C. Vasile (Ed.), Polymeric Nanomaterials in Nanotherapeutics, Elsevier, 437-468, (2019).
  • Peppas, A., Van Blarcom, S., “Hydrogel-based biosensors and sensing devices for drug delivery”, Journal of Control Release, 240: 142-150, (2016).
  • Balamurugan, D., Murali, M., Venkatesan, A., Nagasamy, V. D., “Hydrogel systems: Their classification, preparation and biomedical applications”, International Journal of Pharmaceutical Research, 12: 180-187, (2020).
  • Wei, W., Li, J., Qi, X., Zhong, Y., Zuo, G., Pan, X., Dong, W., “Synthesis and characterization of a multi-sensitive polysaccharide hydrogel for drug delivery”, Carbohydrate Polymers, 177: 275-283, (2017).
  • George, J., Hsu, C. C., Nguyen, Ye, H., Cui, Z., “Neural tissue engineering with structured hydrogels in CNS models and therapies”, Biotechnology Advances, 42: 107370, (2020).
  • Navaei, A., Saini, H., Christenson, W., Sullivan, R. T., Ros, R., Nikkhah, M., “Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs”, Acta Biomaterialia, 41: 133-146, (2016).
  • Kakuta, T., Takashima, Y., Nakahata, M., Otsubo, M., Yamaguchi, H., Harada, A., “Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups”, Advanced Materials, 25: 2849-2853, (2013).
  • Miyamae, K., Nakahata, M., Takashima, Y., Harada, A., “Self-healing, expansion-contraction and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions”, Angewandte Chemie, 127: 9112-9115, (2015).
  • Oliveira, I. M., Gonçalves, C., Shin, M. E., Lee, S., Reis, R. L., Khang, G., Oliveira, J. M., “Enzymatically crosslinked tyramine-gellan gum hydrogels as drug delivery system for rheumatoid arthritis treatment”, Drug Delivery and Translational Research: An Official Journal of the Controlled Release Society, 11(3): 1288-1300, (2020).
  • Torres-Luna, C., Fan, X., Domszy, R., Hu, N., Wang, N. S., Yang, A., “Hydrogel-based ocular drug delivery systems for hydrophobic drugs”, European Journal of Pharmaceutical Sciences, 154: 105503, (2020).
  • Antipova, C., Parunova, Y., Vishnevskaya, M., Grigorev, T., Lukanina, K., Krasheninnikov, S., Gotovtsev, P., “Flexible electroconductive hydrogel for biosensors and biofuel cells application”, Proceedings of the 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, 513-517, (2019).
  • Guo, X., Li, Y., Li, Y., Ye, Z., Zhang, J., Zhu, T., Li, F., “An L012@PAni-PAAm hydrogel composite based-electrochemiluminescence biosensor for in situ detection of H2O2 released from cardiomyocytes”, Electrochimica Acta, 354: 136763, (2020).
  • Zavrel, V., Stol, M. “p(HEMA) composite as allografting material during therapy of periodontal disease: three case reports”, Biomaterials, 14: 1109–1112, (1993).
  • Buxadera-Palomero, J., Fricke, K., Reuter, S., Gil, F.J., Rodriguez, D., Canal, C. “One-Step liquid phase polymerization of HEMA by atmospheric-pressure plasma discharges for Ti dental implants”, Applied Sciences, 11: 662, (2021).
  • Duruk, G., Gürbüz, T. “The relationship between periodontal health and dental caries/restoration in children: A review of the literature”, Journal of Dental Faculty of Ataturk University, 28(3): 421-428, (2018).
  • Passos, M. F., Dias, D. R. C., Bastos, G. N. T., Jardini, A. L., Benatti, A. C. B., Dias, C. G., Maciel Filho, R. “pHEMA hydrogels”, Journal of Thermal Analysis and Calorimetry, 125: 361-368, (2016).
  • Andrade-Vivero, P., Fernandez-Gabriel, E., Alvarez-Lorenzo, C., Concheiro, A., “Improving the loading and release of NSAIDs from pHEMA hydrogels by copolymerization with functionalized monomers”, Journal of Pharmaceutical Sciences, 96: 802-813, (2007).
  • Hrioua, A., Loudiki, A., Farahi, A., Bakasse, M., Lahrich, S., Saqrane, S., El Mhammedi, M. A., “Recent advances in electrochemical sensors for amoxicillin detection in biological and environmental samples”, Bioelectrochemistry, 137: 107687, (2021).
  • Fallahzadeh, R. A., Mahvi, A. H., Meybodi, M. N., Ghaneian, M. T., Dalvand, A., Salmani, M. H., Ehrampoush, M. H., “Application of photo-electro oxidation process for amoxicillin removal from aqueous solution: Modeling and toxicity evaluation”, Korean Journal of Chemical Engineering, 36: 713-721, (2019).
  • Iqbal, M. S., Akmal, M. A., “A simple method for simultaneous determination of some organic liquids in in-process materials and effluents produced in the manufacture of amoxicillin and ampicillin”, Environmental Monitoring and Assessment, 151: 397-400, (2009).
  • Morse, A., “Fate and effect of amoxicillin in space and terrestrial water reclamation systems”, Phd. Thesis, Texas Tech University Institute of Science and Technology, Texas, 158-164, (2003).
  • Johnson, A., Kong, F., Miao, S., Lin, H.T.V., Thomas S., Huang, Y.C., Kong, Z. “Therapeutic effects of antibiotics loaded cellulose nanofiber and κ-carrageenan oligosaccharide composite hydrogels for periodontitis treatment”, Scientific Reports, 10: 18037, (2020).
  • Di Benedetto, A., Gigante, I., Colucci, S., Grano, M. “Periodontal disease: Linking the primary inflammation to bone loss”, Journal of Immunology Research, 503754: 1–7, (2013).
  • Saini, R., Marawar, P. P., Shete, S., Saini, S. “Periodontitis, a true infection”, Journal of Global Infectious Disease 1:149–150, (2009)
  • Tariq, M., Iqbal, Z., Ali, J., Baboota, S., Talegaonkar S., Ahmad Z., Sahni, J. “Treatment modalities and evaluation models for periodontitis”, International Journal of Pharmaceutical Investigation 2: 106–122, (2012)
  • Sanjay, S. T., Zhou, W., Dou, M., Tavakoli, H., Ma, L., Xu, F., Li, X., “Recent advances of controlled drug delivery using microfluidic platforms”, Advanced Drug Delivery Reviews, 128: 3-28, (2018).
  • Nidhi, P., Anamika, C., Twinkle, S., Mehul, S., Hitesh, J., Umesh, U., “Controlled drug delivery system: A review”, Indo American Journal of Pharmaceutical Sciences, 3: 227-233, (2016).
  • Joshi, D., Garg, T., Goyal, A. K., Rath, G., “Advanced drug delivery approaches against periodontitis”, Drug Delivery, 23: 363–377, (2016).
  • Suhail, M., Hsieh, Y.H., Shao, Y.F., Minhas, M.U., Wu, P.C., “Formulation and in-vitro characterization of pH-responsive semi-interpenetrating polymer network hydrogels for controlled release of ketorolac tromethamine”, Gels, 7: 167, (2021).
  • Baliga, S., Muglikar, S., Kale, R., “Salivary pH: A diagnostic biomarker”, Journal of Indian Society of Periodontology, 17: 461–465, (2013).
  • Panda, N., Reddy A. V., Reddy, G. V. S., Panda, K., “Formulation design and in vitro evaluation of zolmitriptan immediate release tablets using primojel and AC-Di-Sol”, Journal of Pharmaceutical Sciences and Research, 7: 545-553, (2015).
  • Huang, C. W., Sun, Y. M., Huang, W. F., “Curing kinetics of the synthesis of poly(2-hydroxyethyl methacrylate) (PHEMA) with ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent”, Journal of Polymer Science Part A: Polymer Chemistry, 35: 1873-1889, (1997).
  • Vargün, E., Usanmaz, A., “Degradation of poly(2-hydroxyethyl methacrylate) obtained by radiation in aqueous solution”, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 47: 882–891, (2010).
  • Yıldırım, E., “Synthesis and characterization of poly (2-hydroxyethyl methacrylate) homopolymer at room temperature via reversible addition–fragmentation chain transfer (RAFT) polymerization Technique” Gazi University Journal of Science, 33: 22-29, (2020).
  • Dobic, S., Jovasevic, J., Vojisavljevic, M., Tomic, S., “Hemocompatibility and swelling studies of poly(2-hydroxyethyl methacrylate-co-itaconic acid-co-poly(ethylene glycol) dimethacrylate) hydrogels”, Hemijska Industrija, 65: 675-685, (2011).
  • Podkoscielna, B., Bartnicki, A., Gawdzik, B., “New crosslinked hydrogels derivatives of 2-hydroxyethyl methacrylate: Synthesis, modifications and properties”, Express Polymer Letters, 6: 759-771, (2012).
  • Wei, W., Hu, X., Qi, X., Yu, H., Liu, Y., Li, J., Zhang, J., Dong, W., “A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): Synthesis and characterization”, Colloids and Surfaces B: Biointerfaces, 125: 1-11, (2015).
  • Gibaldi, M., Feldman, S., “Establishment of sink conditions in dissolution rate determinations. Theoretical considerations and application to nondisintegrating dosage forms”, Journal of Pharmaceutical Sciences, 56: 1238-1242, (1967).
  • Huh, H. W., Zhao, L., Kim, S. Y., “Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer”, Carbohydrate Polymers, 126: 130-140, (2015).
  • Permanadewi, I., Kumoro, A. C., Wardhani, D. H., Aryanti, N., “Modelling of controlled drug release in gastrointestinal tract simulation”, Journal of Physics: Conference Series, 1295: 012063, (2019).
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

Nihal Ermiş 0000-0002-0085-3076

Publication Date December 1, 2022
Published in Issue Year 2022 Volume: 35 Issue: 4

Cite

APA Ermiş, N. (2022). Drug Delivery Application of Poly (2-hydroxyethyl methacrylate)/Ethylene glycol Dimethacrylate Composite Hydrogel. Gazi University Journal of Science, 35(4), 1318-1331. https://doi.org/10.35378/gujs.947687
AMA Ermiş N. Drug Delivery Application of Poly (2-hydroxyethyl methacrylate)/Ethylene glycol Dimethacrylate Composite Hydrogel. Gazi University Journal of Science. December 2022;35(4):1318-1331. doi:10.35378/gujs.947687
Chicago Ermiş, Nihal. “Drug Delivery Application of Poly (2-Hydroxyethyl methacrylate)/Ethylene Glycol Dimethacrylate Composite Hydrogel”. Gazi University Journal of Science 35, no. 4 (December 2022): 1318-31. https://doi.org/10.35378/gujs.947687.
EndNote Ermiş N (December 1, 2022) Drug Delivery Application of Poly (2-hydroxyethyl methacrylate)/Ethylene glycol Dimethacrylate Composite Hydrogel. Gazi University Journal of Science 35 4 1318–1331.
IEEE N. Ermiş, “Drug Delivery Application of Poly (2-hydroxyethyl methacrylate)/Ethylene glycol Dimethacrylate Composite Hydrogel”, Gazi University Journal of Science, vol. 35, no. 4, pp. 1318–1331, 2022, doi: 10.35378/gujs.947687.
ISNAD Ermiş, Nihal. “Drug Delivery Application of Poly (2-Hydroxyethyl methacrylate)/Ethylene Glycol Dimethacrylate Composite Hydrogel”. Gazi University Journal of Science 35/4 (December 2022), 1318-1331. https://doi.org/10.35378/gujs.947687.
JAMA Ermiş N. Drug Delivery Application of Poly (2-hydroxyethyl methacrylate)/Ethylene glycol Dimethacrylate Composite Hydrogel. Gazi University Journal of Science. 2022;35:1318–1331.
MLA Ermiş, Nihal. “Drug Delivery Application of Poly (2-Hydroxyethyl methacrylate)/Ethylene Glycol Dimethacrylate Composite Hydrogel”. Gazi University Journal of Science, vol. 35, no. 4, 2022, pp. 1318-31, doi:10.35378/gujs.947687.
Vancouver Ermiş N. Drug Delivery Application of Poly (2-hydroxyethyl methacrylate)/Ethylene glycol Dimethacrylate Composite Hydrogel. Gazi University Journal of Science. 2022;35(4):1318-31.