In this article, we aim to describe a new operator J_(s,a,μ)^(δ,λ) via convolution. Moreover, we aim to present a new subclass C_Σm (τ;β) related to m-fold symmetric bi-univalent functions in the open unit disk Θ={z∈C∶|z| ˂ 1 }. Finally, an estimate related to the Hankel determinant for functions in C_Σm (τ;β) are given.
[1] Duren, P. L., “Univalent Functions”, Springer - Verlag, New York, (1983).
[2] Srivastava, H. M., Mishra, A. K., Gochhayat, P., “Certain subclasses of analytic and bi-univalent functions”, Applied Mathematics Letters, 23(10): 1188–1192, (2010).
[3] Atshan, W. G., Yalçın, S. Hadi, R. A., “Coefficient estimates for special subclasses of k-fold symmetric bi-univalent functions”, Mathematics for Applications, 9: 83-90, (2020).
[4] Brannan, D. A., Clunie, J. G., “Aspects of contemporary complex analysis”, Proceedings of the NATO Advanced Study Institute Held at University of Durham, New York: Academic Press, (1979).
[5] Brannan, D. A., Taha, T. S., “On some classes of bi-univalent functions”, Studia Universitatis Babeş-Bolyai Mathematica, 31(2): 70-77, (1986).
[6] Çağlar, M., Deniz, E., “Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66 (1), 85-91, (2017).
[7] Kazımoğlu, S., Deniz, E., “Fekete-Szegö problem for generalized bi-subordinate functions of complex order”, Hacettepe Journal of Mathematics and Statistics, 49(5): 1695-1705, (2020).
[8] Lewin, M., “On a coefficient problem for bi-univalent functions”, Proceding of the American Mathematical Society, 18: 63-68, (1967).
[9] Netanyahau, E., “The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in | z |< 1”, Archive for Rotional Mechanic and Analysis, 32(2): 100-112, (1969).
[10] Yalçın, S., Atshan, W. G., Hassan, H. Z., “Coefficients assessment for certain subclasses of bi-univalent functions related with quasi-subordination”, Publications De Ľ Institut Mathematique, Nouvelle seŕie, 108(122): 155-162, (2020).
[11] Aldweby, H., Darus, M., “Some subordination results on q-analogue of Ruscheweyh differential operator”, Abstract and Applied Analysis, 2014: 1-6, (2014).
[12] Komatu, Y., “On analytic prolongation of family of integral operators”, Mathematica (Cluj), 32(55): 141-145, (1990).
[13] Atshan, W. G., Badawi, E. I., “On sandwich theorems for certain univalent function defined by a new operator”, Journal of Al-Qadisiyah for Computer Science and Mathematics, 11(2): 72-80, (2019).
[14] Koepf, W., “Coefficient of symmetric functions of bounded boundary rotations”, Proceding of the American Mathematical Society, 105: 324–329, (1989).
[15] Pommerenke, Ch., “Univalent Functions”, Vandenhoeck and Ruprecht, Gottingen, (1975).
[16] Srivastava, H. M., Gaboury, S., Ghanim, F., “Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions”, Acta Universitatis Apulensis, 41: 153-164, (2015).
[17] Noonan, J. W., Thomas, D. K., “On the second Hankel determinant of areally mean p-valent functions”, Transactions of the American Mathematical Society, 223(2): 337–346, (1976).
[18] Fekete, M., Szegӧ, G., “Eine bemerkung uber ungerade schlichte funktionen”, Journal of London Mathematical Society, 2: 85-89, (1933).
[19] Altınkaya, Ş., Yalçın, S., “Second Hankel determinant for a general subclass of bi-univalent functions”, TWMS Journal of Pure and Applied Mathematics, 7(1): 98-104, (2015).
[20] Çağlar, M., Deniz, E., Srivastava, H. M. “Second Hankel determinant for certain subclasses of bi-univalent functions”, Turkish Journal of Mathematics, 41 (3), 694-706, (2017).
[21] Deniz, E., Çağlar, M., Orhan, H., “Second hankel determinant for bi-starlike and biconvex functions of order β”, Applied Mathematics and Computation, 271, 301-307, (2015).
[22] Hayami, T., Owa, S., “Generalized Hankel determinant for certain classes”, International Journal of Mathematical Analysis, 52(4): 2473–2585, (2010).
[23] Yavuz, T., “Second Hankel determinant for analytic functions defined by Ruscheweyh derivative”, International Journal of Analysis and Applications, 8(1): 63-68, (2015).
[24] Grenander, U., Szegö, G., “Toeplitz forms and their applications”, California Monographs in Mathematical Sciences, Univ. California Press, Berkeley, (1958).
Year 2023,
Volume: 36 Issue: 1, 349 - 360, 01.03.2023
[1] Duren, P. L., “Univalent Functions”, Springer - Verlag, New York, (1983).
[2] Srivastava, H. M., Mishra, A. K., Gochhayat, P., “Certain subclasses of analytic and bi-univalent functions”, Applied Mathematics Letters, 23(10): 1188–1192, (2010).
[3] Atshan, W. G., Yalçın, S. Hadi, R. A., “Coefficient estimates for special subclasses of k-fold symmetric bi-univalent functions”, Mathematics for Applications, 9: 83-90, (2020).
[4] Brannan, D. A., Clunie, J. G., “Aspects of contemporary complex analysis”, Proceedings of the NATO Advanced Study Institute Held at University of Durham, New York: Academic Press, (1979).
[5] Brannan, D. A., Taha, T. S., “On some classes of bi-univalent functions”, Studia Universitatis Babeş-Bolyai Mathematica, 31(2): 70-77, (1986).
[6] Çağlar, M., Deniz, E., “Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66 (1), 85-91, (2017).
[7] Kazımoğlu, S., Deniz, E., “Fekete-Szegö problem for generalized bi-subordinate functions of complex order”, Hacettepe Journal of Mathematics and Statistics, 49(5): 1695-1705, (2020).
[8] Lewin, M., “On a coefficient problem for bi-univalent functions”, Proceding of the American Mathematical Society, 18: 63-68, (1967).
[9] Netanyahau, E., “The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in | z |< 1”, Archive for Rotional Mechanic and Analysis, 32(2): 100-112, (1969).
[10] Yalçın, S., Atshan, W. G., Hassan, H. Z., “Coefficients assessment for certain subclasses of bi-univalent functions related with quasi-subordination”, Publications De Ľ Institut Mathematique, Nouvelle seŕie, 108(122): 155-162, (2020).
[11] Aldweby, H., Darus, M., “Some subordination results on q-analogue of Ruscheweyh differential operator”, Abstract and Applied Analysis, 2014: 1-6, (2014).
[12] Komatu, Y., “On analytic prolongation of family of integral operators”, Mathematica (Cluj), 32(55): 141-145, (1990).
[13] Atshan, W. G., Badawi, E. I., “On sandwich theorems for certain univalent function defined by a new operator”, Journal of Al-Qadisiyah for Computer Science and Mathematics, 11(2): 72-80, (2019).
[14] Koepf, W., “Coefficient of symmetric functions of bounded boundary rotations”, Proceding of the American Mathematical Society, 105: 324–329, (1989).
[15] Pommerenke, Ch., “Univalent Functions”, Vandenhoeck and Ruprecht, Gottingen, (1975).
[16] Srivastava, H. M., Gaboury, S., Ghanim, F., “Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions”, Acta Universitatis Apulensis, 41: 153-164, (2015).
[17] Noonan, J. W., Thomas, D. K., “On the second Hankel determinant of areally mean p-valent functions”, Transactions of the American Mathematical Society, 223(2): 337–346, (1976).
[18] Fekete, M., Szegӧ, G., “Eine bemerkung uber ungerade schlichte funktionen”, Journal of London Mathematical Society, 2: 85-89, (1933).
[19] Altınkaya, Ş., Yalçın, S., “Second Hankel determinant for a general subclass of bi-univalent functions”, TWMS Journal of Pure and Applied Mathematics, 7(1): 98-104, (2015).
[20] Çağlar, M., Deniz, E., Srivastava, H. M. “Second Hankel determinant for certain subclasses of bi-univalent functions”, Turkish Journal of Mathematics, 41 (3), 694-706, (2017).
[21] Deniz, E., Çağlar, M., Orhan, H., “Second hankel determinant for bi-starlike and biconvex functions of order β”, Applied Mathematics and Computation, 271, 301-307, (2015).
[22] Hayami, T., Owa, S., “Generalized Hankel determinant for certain classes”, International Journal of Mathematical Analysis, 52(4): 2473–2585, (2010).
[23] Yavuz, T., “Second Hankel determinant for analytic functions defined by Ruscheweyh derivative”, International Journal of Analysis and Applications, 8(1): 63-68, (2015).
[24] Grenander, U., Szegö, G., “Toeplitz forms and their applications”, California Monographs in Mathematical Sciences, Univ. California Press, Berkeley, (1958).
Galıb, W., Al-sajjad, R. A., & Altınkaya, Ş. (2023). On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator. Gazi University Journal of Science, 36(1), 349-360. https://doi.org/10.35378/gujs.958309
AMA
Galıb W, Al-sajjad RA, Altınkaya Ş. On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator. Gazi University Journal of Science. March 2023;36(1):349-360. doi:10.35378/gujs.958309
Chicago
Galıb, Waggas, Reaam Abd Al-sajjad, and Şahsene Altınkaya. “On the Hankel Determinant of M-Fold Symmetric Bi-Univalent Functions Using a New Operator”. Gazi University Journal of Science 36, no. 1 (March 2023): 349-60. https://doi.org/10.35378/gujs.958309.
EndNote
Galıb W, Al-sajjad RA, Altınkaya Ş (March 1, 2023) On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator. Gazi University Journal of Science 36 1 349–360.
IEEE
W. Galıb, R. A. Al-sajjad, and Ş. Altınkaya, “On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator”, Gazi University Journal of Science, vol. 36, no. 1, pp. 349–360, 2023, doi: 10.35378/gujs.958309.
ISNAD
Galıb, Waggas et al. “On the Hankel Determinant of M-Fold Symmetric Bi-Univalent Functions Using a New Operator”. Gazi University Journal of Science 36/1 (March 2023), 349-360. https://doi.org/10.35378/gujs.958309.
JAMA
Galıb W, Al-sajjad RA, Altınkaya Ş. On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator. Gazi University Journal of Science. 2023;36:349–360.
MLA
Galıb, Waggas et al. “On the Hankel Determinant of M-Fold Symmetric Bi-Univalent Functions Using a New Operator”. Gazi University Journal of Science, vol. 36, no. 1, 2023, pp. 349-60, doi:10.35378/gujs.958309.
Vancouver
Galıb W, Al-sajjad RA, Altınkaya Ş. On the Hankel Determinant of m-fold Symmetric Bi-Univalent Functions Using a New Operator. Gazi University Journal of Science. 2023;36(1):349-60.