Research Article
BibTex RIS Cite

Theoretical and Experimental Comparison of Revolving Vane Compressors and Rolling Piston Compressors

Year 2023, Volume: 36 Issue: 2, 882 - 896, 01.06.2023
https://doi.org/10.35378/gujs.1054160

Abstract

Rotary compressors have some advantages such as lower noise, vibration, lower cost and few parts. For this reason, it is preferred more than its substitutes such as piston, screw and sliding compressors in cooling and air-conditioning systems. In this study, two different designs, rolling piston and revolving vane, were made to increase the performance of the double-stage, rotary compressor with a volume of 22.6 cc. When the test results are examined, it is seen that the rolling piston compressor consumes 1.3 times less power than the electric motor for 2700 rpm and 3 bar pressure, due to the lower inertia forces compared to the revolving vane compressor.

Supporting Institution

Gazi Üniversitesi

Project Number

07/2018-03

Thanks

We would like to thank Gazi University Scientific Research Projects Unit for their support for the project numbered 07/2018-03.

References

  • [1] Bulut, Y. M., Yıldız, Z., “Comparing energy demand estimation using various statistical methods: the case of Turkey”, Gazi University Journal of Science, 29(2): 237-244, (2016).
  • [2] Düz, H., “Storing solar energy inside compressed air through a heat machine mechanism”, Gazi University Journal of Science, 29(2): 245-251, (2016).
  • [3] Cai, D., Qiu, C., Pan, J., Yang, X., He, G., Tetsuhide, Y., Chen, X., Li, H., “Leakage characteristics and an updated volumetric efficiency prediction model of rolling piston type rotary compressor for small capacity air-conditioner and heat pump applications”, Applied Thermal Engineering, 121: 1080-1094, (2017). DOI: 10.1016/j.applthermaleng.2017.04.148
  • [4] Gu, H., Chen, Y., Wu, J., Jiang, Y., and Sundén, B., “Impact of discharge port configurations on the performance of sliding vane rotary compressors with a rotating cylinder”, Applied Thermal Engineering, 186: 116526, (2021a). DOI: 10.1016/j.applthermaleng.2020.116526
  • [5] Gurel, A. E., Agbulut, Ü., Ergun, A., Ceylan, I., “Environmental and economic assessment of a low energy consumption household refrigerator”, Engineering Science and Technology, an International Journal, 23(2): 365-372, (2020). DOI: 10.1016/j.jestch.2019.06.003
  • [6] Jadhav, T. S., Lele, M. M., “Theoretical energy saving analysis of air conditioning system using heat pipe heat exchanger for Indian climatic zones”, Engineering Science and Technology, an International Journal, 18(4): 669-673, (2015). DOI: 10.1016/j.jestch.2015.04.009
  • [7] Yamık, H., İçingür, Y., “Dizel Motorlarında Alternatif Yakıt Olarak Etil Esterin Kullanımı”, GÜ Fen Bilimleri Dergisi, 18(3): 545-553, (2005).
  • [8] Saidur, R., Rahim, N. A., Hasanuzzaman, M., “A review on compressed-air energy use and energy savings”, Renewable and Sustainable Energy Reviews, 14(4): 1135-1153, (2010).
  • [9] Abdulhussain, M. A., “CFD pretending of vapor and liquid refrigerant mixing in variable speed scroll compressor”, Engineering Science and Technology, an International Journal, 22(1): 168-176. (2019). DOI: 10.1016/j.jestch.2018.07.017
  • [10] Wang, B., Liu, X., Shi, W., and Ding, Y., “An enhanced rotary compressor with gas injection through a novel end-plate injection structure”, Applied Thermal Engineering, 131: 180-191, (2018). DOI: 10.1016/j.applthermaleng.2017.12.010
  • [11] Molinaroli, L., Joppolo, C. M., De Antonellis, S., “A semi-empirical model for hermetic rolling piston compressors”, International Journal of Refrigeration, 79: 226-237, (2017). DOI: 10.1016/j.ijrefrig.2017.04.015
  • [12] Tan, K. M., Ooi, K. T., “Journal bearings design for a novel revolving vane compressor”, International Journal of Refrigeration, 34(1): 94-104, (2011a). DOI: 10.1016/j.ijrefrig.2010.08.012
  • [13] Chen, Z., Wu, J., Li, G., “Experimental study on the tribological characteristic of vane–roller interface of HC290 rotary compressor with mineral oil”, International Journal of Refrigeration, 94: 205-213, (2018). DOI: 10.1016/j.ijrefrig.2018.01.019
  • [14] Gu, H., Zhou, X., Chen, Y., Wu, J., Wu, Z., Jiang, Y., Sundén, B., “Analysis, modeling and simulations of an innovative sliding vane rotary compressor with a rotating cylinder”, Energy Conversion and Management, 230: 113822, (2021b). DOI: 10.1016/j.enconman.2020.113822
  • [15] Okur, M., Arabaci, E., “Experimental study of a novel hinged vane rotary turbine–part I: The effect of different vane thickness and vane weight on turbine performance”, International Journal of Refrigeration, 51: 70-76, (2015). DOI: 10.1016/j.ijrefrig.2014.12.012
  • [16] Ooi, K. T., “Design optimization of a rolling piston compressor for refrigerators”, Applied Thermal Engineering, 25(5-6):813-829, (2005). DOI: 10.1016/j.applthermaleng.2004.07.017
  • [17] Ooi, K. T., “Assessment of a rotary compressor performance operating at transcritical carbon dioxide cycles”, Applied Thermal Engineering, 28(10): 1160-1167, (2008).
  • [18] Ooi, K. T., Wong, T. N., “A computer simulation of a rotary compressor for household refrigerators”, Applied Thermal Engineering, 17(1): 65-78, (1997). DOI: 10.1016/1359-4311(96)00013-0
  • [19] Subiantoro, A., Ooi K. T., “Analytical study of the endface friction of the revolving vane mechanism”, International Journal of Refrigeration, 34(5): 1276-1285 (2011).
  • [20] Xu, M., Yang, J., “Dynamic and Friction Loss Analysis of the Vane in the Revolving Vane Compressor with the External Driving System”, SAE International Journal of Materials & Manufacturing, 14(4), 375, (2021).
  • [21] Cai, D., He, G., Yokoyama, T., Tian, Q., Yang, X., Pan, J., “Simulation and comparison of leakage characteristics of R290 in rolling piston type rotary compressor”, International Journal of Refrigeration, 53: 42-54, (2015). DOI: 10.1016/j.ijrefrig.2015.02.001
  • [22] Ferraris, G., Andrianoely, M. A., Berlioz, A., Dufour, R., “Influence of cylinder pressure on the balancing of a rotary compressor”, Journal of Sound and Vibration, 292(3-5): 899-910, (2006). DOI: 10.1016/j.jsv.2005.09.026
  • [23] Lee, S. J., Shim, J., Kim, K. C., “Development of capacity modulation compressor based on a two-stage rotary compressor–Part ΙΙ: Performance experiments and P–V analysis”, International Journal of Refrigeration, 61: 82-99, (2016). DOI: 10.1016/j.ijrefrig.2015.09.008
  • [24] Park, Y. C., “Transient analysis of a variable speed rotary compressor”, Energy Conversion Management, 51(2): 277-287, (2010). DOI: 10.1016/j.enconman.2009.09.023.
  • [25] Wu, J., Chen, A., “A new structure and theoretical analysis on leakage and performance of an oil-free R290 rolling piston compressor”, International Journal of Refrigeration, 49: 110-118, (2015). DOI: 10.1016/j.ijrefrig.2014.10.007
  • [26] Shin, M., Na, S., Lee, J., Min, B., Choi, G., “Model analysis of a novel compressor with a dual chamber for high-efficiency systems”. Applied Thermal Engineering, 158, 113717, (2019).
  • [27] Okur, M., Akmandor, I. S., “Experimental investigation of hinged and spring loaded rolling piston compressors pertaining to a turbo rotary engine”, Applied Thermal Engineering, 31(6-7): 1031-1038, (2011). DOI: 10.1016/j.applthermaleng.2010.11.027
  • [28] Lee, Y. Z., Oh, S. D., “Friction and wear of the rotary compressor vane–roller surfaces for several sliding conditions”, Wear, 255(7-12): 1168-1173, (2003). DOI: 10.1016/S0043-1648(03)00278-3
  • [29] Sung, H. C., “Tribological characteristics of various surface coatings for rotary compressor vane”, Wear, 221(2): 77-85, (1998). DOI: 10.1016/S0043-1648(98)00244-0
  • [30] Shuxue, X., Guoyuan, M., “Experimental study on two-stage compression refrigeration/heat pump system with dual-cylinder rolling piston compressor”, Applied Thermal Engineering, 62(2): 803-808, (2014). DOI: 10.1016/j.applthermaleng.2013.09.035
  • [31] Ba, D. C., Deng, W. J., Che, S. G., Li, Y., Guo, H. X., Li, N., Yue, X. J., “Gas dynamics analysis of a rotary compressor based on CFD”, Applied Thermal Engineering, 99: 1263-1269, (2016). DOI: 10.1016/j.applthermaleng.2016.01.062
  • [32] Shin, M., Na, S., Lee, J., Min, B., Choi, G., “Model analysis of a novel compressor with a dual chamber for high-efficiency systems”, Applied Thermal Engineering, 158: 113717, (2019). DOI: 10.1016/j.applthermaleng.2019.113717
  • [33] Tan, K. M., Ooi, K. T., “A novel revolving vane compressor with a fixed-vane”, International Journal of Refrigeration, 34(8): 1980-1988, (2011b). DOI: 10.1016/j.ijrefrig.2011.06.010
  • [34] Teh, Y. L., Ooi, K. T., “Theoretical study of a novel refrigeration compressor–Part I: Design of the revolving vane (RV) compressor and its frictional losses”, International Journal of Refrigeration, 32(5): 1092-1102, (2009a). DOI: 10.1016/j.ijrefrig.2008.09.006
  • [35] Teh, Y. L., Ooi, K. T., Djamari, D. W., “Theoretical study of a novel refrigeration compressor–Part II: Performance of a rotating discharge valve in the revolving vane (RV) compressor”, International Journal of Refrigeration, 32(5): 1103-1111, (2009b). DOI: 10.1016/j.ijrefrig.2008.09.007
  • [36] Teh, Y. L., Ooi, K. T., “Theoretical study of a novel refrigeration Compressor-Part III: Lakage loss of the revolving vane (RV) compressor and a comparison with that of the rolling piston type”, International Journal of Refrigeration, 32(5): 945-952, (2009c). DOI: 10.1016/j.ijrefrig.2008.11.001
  • [37] Tan, K. M., Ooi, K. T., “Experimental study of fixed-vane revolving vane compressor”, Applied Thermal Engineering, 62(1): 207-214, (2014). DOI: 10.1016/j.applthermaleng.2013.09.038
  • [38] Teh, Y. L., Ooi, K. T., “Experimental study of the revolving vane (RV) compressor”, Applied Thermal Engineering”, 29(14-15): 3235-3245, (2009d). DOI: 10.1016/j.applthermaleng.2009.04.029
  • [39] Hu, Y., Xu, J., Wan, P., Luo, F., Wu, F., Ren, L. “A study on novel high efficiency vane compressor”, International Compressor Engineering Conference, 2601, (2018).
  • [40] Ooi, K. T., Shakya, P., “A new compact rotary compressor: coupled vane compressor”, International Compressor Engineering Conference, 2613, (2018).
  • [41] Ooi, K. T., Shakya, P., “Simulation studies of a coupled vane compressor”, IOP Conference Series: Materials Science and Engineering, 604, 012069, (2019). DOI: 10.1088/1757-899X/604/1/012069
  • [42] Shakya, P., Ooi, K. T., “Introduction to Coupled Vane compressor: Mathematical modelling with validation”, International Journal of Refrigeration, 117, 23-32, (2020). DOI: 10.1016/j.ijrefrig.2020.01.027
  • [43] De Lim, Y., Ooi, K. T., “Performance analysis of a U-Vane compressor”, Applied Thermal Engineering, 178, 115570, (2020). DOI: 10.1016/j.applthermaleng.2020.115570
  • [44] Shakya, P., Ooi, K. T., “Dynamic modelling and experimental validation of Coupled Vane Compressor”, IOP Conference Series: Materials Science and Engineering, 1180, 012029, (2021). DOI: 10.1088/1757-899X/1180/1/012029
  • [45] Chen, Q. J., Ooi, K. T., “Performance Comparison between Rolling Piston and Coupled Vane Compressor”, International Compressor Engineering Conference, 2708, (2021).
  • [46] Choo, W. C., Ooi, K. T., “Analysis of the novel multi-vane Revolving Vane compressor–Theoretical modelling and experimental investigations”, International Journal of Refrigeration, 131, 592-603, (2021). DOI: doi.org/10.1016/j.ijrefrig.2021.08.004
  • [47] Choo, W. C., Ooi, K. T., “Analysis of the novel multi-vane Revolving Vane compressor–Investigation of vane chattering phenomenon through instantaneous working chamber pressure measurements”, International Journal of Refrigeration, 134, 207-218, (2022). DOI: 10.1016/j.ijrefrig.2021.11.020
  • [48] Aw, K. T., Ooi, K. T., “A Review on Sliding Vane and Rolling Piston Compressors”, Machines, 9(6), 125, (2021). DOI: 10.3390/machines9060125
Year 2023, Volume: 36 Issue: 2, 882 - 896, 01.06.2023
https://doi.org/10.35378/gujs.1054160

Abstract

Project Number

07/2018-03

References

  • [1] Bulut, Y. M., Yıldız, Z., “Comparing energy demand estimation using various statistical methods: the case of Turkey”, Gazi University Journal of Science, 29(2): 237-244, (2016).
  • [2] Düz, H., “Storing solar energy inside compressed air through a heat machine mechanism”, Gazi University Journal of Science, 29(2): 245-251, (2016).
  • [3] Cai, D., Qiu, C., Pan, J., Yang, X., He, G., Tetsuhide, Y., Chen, X., Li, H., “Leakage characteristics and an updated volumetric efficiency prediction model of rolling piston type rotary compressor for small capacity air-conditioner and heat pump applications”, Applied Thermal Engineering, 121: 1080-1094, (2017). DOI: 10.1016/j.applthermaleng.2017.04.148
  • [4] Gu, H., Chen, Y., Wu, J., Jiang, Y., and Sundén, B., “Impact of discharge port configurations on the performance of sliding vane rotary compressors with a rotating cylinder”, Applied Thermal Engineering, 186: 116526, (2021a). DOI: 10.1016/j.applthermaleng.2020.116526
  • [5] Gurel, A. E., Agbulut, Ü., Ergun, A., Ceylan, I., “Environmental and economic assessment of a low energy consumption household refrigerator”, Engineering Science and Technology, an International Journal, 23(2): 365-372, (2020). DOI: 10.1016/j.jestch.2019.06.003
  • [6] Jadhav, T. S., Lele, M. M., “Theoretical energy saving analysis of air conditioning system using heat pipe heat exchanger for Indian climatic zones”, Engineering Science and Technology, an International Journal, 18(4): 669-673, (2015). DOI: 10.1016/j.jestch.2015.04.009
  • [7] Yamık, H., İçingür, Y., “Dizel Motorlarında Alternatif Yakıt Olarak Etil Esterin Kullanımı”, GÜ Fen Bilimleri Dergisi, 18(3): 545-553, (2005).
  • [8] Saidur, R., Rahim, N. A., Hasanuzzaman, M., “A review on compressed-air energy use and energy savings”, Renewable and Sustainable Energy Reviews, 14(4): 1135-1153, (2010).
  • [9] Abdulhussain, M. A., “CFD pretending of vapor and liquid refrigerant mixing in variable speed scroll compressor”, Engineering Science and Technology, an International Journal, 22(1): 168-176. (2019). DOI: 10.1016/j.jestch.2018.07.017
  • [10] Wang, B., Liu, X., Shi, W., and Ding, Y., “An enhanced rotary compressor with gas injection through a novel end-plate injection structure”, Applied Thermal Engineering, 131: 180-191, (2018). DOI: 10.1016/j.applthermaleng.2017.12.010
  • [11] Molinaroli, L., Joppolo, C. M., De Antonellis, S., “A semi-empirical model for hermetic rolling piston compressors”, International Journal of Refrigeration, 79: 226-237, (2017). DOI: 10.1016/j.ijrefrig.2017.04.015
  • [12] Tan, K. M., Ooi, K. T., “Journal bearings design for a novel revolving vane compressor”, International Journal of Refrigeration, 34(1): 94-104, (2011a). DOI: 10.1016/j.ijrefrig.2010.08.012
  • [13] Chen, Z., Wu, J., Li, G., “Experimental study on the tribological characteristic of vane–roller interface of HC290 rotary compressor with mineral oil”, International Journal of Refrigeration, 94: 205-213, (2018). DOI: 10.1016/j.ijrefrig.2018.01.019
  • [14] Gu, H., Zhou, X., Chen, Y., Wu, J., Wu, Z., Jiang, Y., Sundén, B., “Analysis, modeling and simulations of an innovative sliding vane rotary compressor with a rotating cylinder”, Energy Conversion and Management, 230: 113822, (2021b). DOI: 10.1016/j.enconman.2020.113822
  • [15] Okur, M., Arabaci, E., “Experimental study of a novel hinged vane rotary turbine–part I: The effect of different vane thickness and vane weight on turbine performance”, International Journal of Refrigeration, 51: 70-76, (2015). DOI: 10.1016/j.ijrefrig.2014.12.012
  • [16] Ooi, K. T., “Design optimization of a rolling piston compressor for refrigerators”, Applied Thermal Engineering, 25(5-6):813-829, (2005). DOI: 10.1016/j.applthermaleng.2004.07.017
  • [17] Ooi, K. T., “Assessment of a rotary compressor performance operating at transcritical carbon dioxide cycles”, Applied Thermal Engineering, 28(10): 1160-1167, (2008).
  • [18] Ooi, K. T., Wong, T. N., “A computer simulation of a rotary compressor for household refrigerators”, Applied Thermal Engineering, 17(1): 65-78, (1997). DOI: 10.1016/1359-4311(96)00013-0
  • [19] Subiantoro, A., Ooi K. T., “Analytical study of the endface friction of the revolving vane mechanism”, International Journal of Refrigeration, 34(5): 1276-1285 (2011).
  • [20] Xu, M., Yang, J., “Dynamic and Friction Loss Analysis of the Vane in the Revolving Vane Compressor with the External Driving System”, SAE International Journal of Materials & Manufacturing, 14(4), 375, (2021).
  • [21] Cai, D., He, G., Yokoyama, T., Tian, Q., Yang, X., Pan, J., “Simulation and comparison of leakage characteristics of R290 in rolling piston type rotary compressor”, International Journal of Refrigeration, 53: 42-54, (2015). DOI: 10.1016/j.ijrefrig.2015.02.001
  • [22] Ferraris, G., Andrianoely, M. A., Berlioz, A., Dufour, R., “Influence of cylinder pressure on the balancing of a rotary compressor”, Journal of Sound and Vibration, 292(3-5): 899-910, (2006). DOI: 10.1016/j.jsv.2005.09.026
  • [23] Lee, S. J., Shim, J., Kim, K. C., “Development of capacity modulation compressor based on a two-stage rotary compressor–Part ΙΙ: Performance experiments and P–V analysis”, International Journal of Refrigeration, 61: 82-99, (2016). DOI: 10.1016/j.ijrefrig.2015.09.008
  • [24] Park, Y. C., “Transient analysis of a variable speed rotary compressor”, Energy Conversion Management, 51(2): 277-287, (2010). DOI: 10.1016/j.enconman.2009.09.023.
  • [25] Wu, J., Chen, A., “A new structure and theoretical analysis on leakage and performance of an oil-free R290 rolling piston compressor”, International Journal of Refrigeration, 49: 110-118, (2015). DOI: 10.1016/j.ijrefrig.2014.10.007
  • [26] Shin, M., Na, S., Lee, J., Min, B., Choi, G., “Model analysis of a novel compressor with a dual chamber for high-efficiency systems”. Applied Thermal Engineering, 158, 113717, (2019).
  • [27] Okur, M., Akmandor, I. S., “Experimental investigation of hinged and spring loaded rolling piston compressors pertaining to a turbo rotary engine”, Applied Thermal Engineering, 31(6-7): 1031-1038, (2011). DOI: 10.1016/j.applthermaleng.2010.11.027
  • [28] Lee, Y. Z., Oh, S. D., “Friction and wear of the rotary compressor vane–roller surfaces for several sliding conditions”, Wear, 255(7-12): 1168-1173, (2003). DOI: 10.1016/S0043-1648(03)00278-3
  • [29] Sung, H. C., “Tribological characteristics of various surface coatings for rotary compressor vane”, Wear, 221(2): 77-85, (1998). DOI: 10.1016/S0043-1648(98)00244-0
  • [30] Shuxue, X., Guoyuan, M., “Experimental study on two-stage compression refrigeration/heat pump system with dual-cylinder rolling piston compressor”, Applied Thermal Engineering, 62(2): 803-808, (2014). DOI: 10.1016/j.applthermaleng.2013.09.035
  • [31] Ba, D. C., Deng, W. J., Che, S. G., Li, Y., Guo, H. X., Li, N., Yue, X. J., “Gas dynamics analysis of a rotary compressor based on CFD”, Applied Thermal Engineering, 99: 1263-1269, (2016). DOI: 10.1016/j.applthermaleng.2016.01.062
  • [32] Shin, M., Na, S., Lee, J., Min, B., Choi, G., “Model analysis of a novel compressor with a dual chamber for high-efficiency systems”, Applied Thermal Engineering, 158: 113717, (2019). DOI: 10.1016/j.applthermaleng.2019.113717
  • [33] Tan, K. M., Ooi, K. T., “A novel revolving vane compressor with a fixed-vane”, International Journal of Refrigeration, 34(8): 1980-1988, (2011b). DOI: 10.1016/j.ijrefrig.2011.06.010
  • [34] Teh, Y. L., Ooi, K. T., “Theoretical study of a novel refrigeration compressor–Part I: Design of the revolving vane (RV) compressor and its frictional losses”, International Journal of Refrigeration, 32(5): 1092-1102, (2009a). DOI: 10.1016/j.ijrefrig.2008.09.006
  • [35] Teh, Y. L., Ooi, K. T., Djamari, D. W., “Theoretical study of a novel refrigeration compressor–Part II: Performance of a rotating discharge valve in the revolving vane (RV) compressor”, International Journal of Refrigeration, 32(5): 1103-1111, (2009b). DOI: 10.1016/j.ijrefrig.2008.09.007
  • [36] Teh, Y. L., Ooi, K. T., “Theoretical study of a novel refrigeration Compressor-Part III: Lakage loss of the revolving vane (RV) compressor and a comparison with that of the rolling piston type”, International Journal of Refrigeration, 32(5): 945-952, (2009c). DOI: 10.1016/j.ijrefrig.2008.11.001
  • [37] Tan, K. M., Ooi, K. T., “Experimental study of fixed-vane revolving vane compressor”, Applied Thermal Engineering, 62(1): 207-214, (2014). DOI: 10.1016/j.applthermaleng.2013.09.038
  • [38] Teh, Y. L., Ooi, K. T., “Experimental study of the revolving vane (RV) compressor”, Applied Thermal Engineering”, 29(14-15): 3235-3245, (2009d). DOI: 10.1016/j.applthermaleng.2009.04.029
  • [39] Hu, Y., Xu, J., Wan, P., Luo, F., Wu, F., Ren, L. “A study on novel high efficiency vane compressor”, International Compressor Engineering Conference, 2601, (2018).
  • [40] Ooi, K. T., Shakya, P., “A new compact rotary compressor: coupled vane compressor”, International Compressor Engineering Conference, 2613, (2018).
  • [41] Ooi, K. T., Shakya, P., “Simulation studies of a coupled vane compressor”, IOP Conference Series: Materials Science and Engineering, 604, 012069, (2019). DOI: 10.1088/1757-899X/604/1/012069
  • [42] Shakya, P., Ooi, K. T., “Introduction to Coupled Vane compressor: Mathematical modelling with validation”, International Journal of Refrigeration, 117, 23-32, (2020). DOI: 10.1016/j.ijrefrig.2020.01.027
  • [43] De Lim, Y., Ooi, K. T., “Performance analysis of a U-Vane compressor”, Applied Thermal Engineering, 178, 115570, (2020). DOI: 10.1016/j.applthermaleng.2020.115570
  • [44] Shakya, P., Ooi, K. T., “Dynamic modelling and experimental validation of Coupled Vane Compressor”, IOP Conference Series: Materials Science and Engineering, 1180, 012029, (2021). DOI: 10.1088/1757-899X/1180/1/012029
  • [45] Chen, Q. J., Ooi, K. T., “Performance Comparison between Rolling Piston and Coupled Vane Compressor”, International Compressor Engineering Conference, 2708, (2021).
  • [46] Choo, W. C., Ooi, K. T., “Analysis of the novel multi-vane Revolving Vane compressor–Theoretical modelling and experimental investigations”, International Journal of Refrigeration, 131, 592-603, (2021). DOI: doi.org/10.1016/j.ijrefrig.2021.08.004
  • [47] Choo, W. C., Ooi, K. T., “Analysis of the novel multi-vane Revolving Vane compressor–Investigation of vane chattering phenomenon through instantaneous working chamber pressure measurements”, International Journal of Refrigeration, 134, 207-218, (2022). DOI: 10.1016/j.ijrefrig.2021.11.020
  • [48] Aw, K. T., Ooi, K. T., “A Review on Sliding Vane and Rolling Piston Compressors”, Machines, 9(6), 125, (2021). DOI: 10.3390/machines9060125
There are 48 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mechanical Engineering
Authors

Duygu Gürkan 0000-0002-2917-3330

Melih Okur 0000-0002-6017-1050

İhsan Korkut 0000-0002-5001-4449

Project Number 07/2018-03
Publication Date June 1, 2023
Published in Issue Year 2023 Volume: 36 Issue: 2

Cite

APA Gürkan, D., Okur, M., & Korkut, İ. (2023). Theoretical and Experimental Comparison of Revolving Vane Compressors and Rolling Piston Compressors. Gazi University Journal of Science, 36(2), 882-896. https://doi.org/10.35378/gujs.1054160
AMA Gürkan D, Okur M, Korkut İ. Theoretical and Experimental Comparison of Revolving Vane Compressors and Rolling Piston Compressors. Gazi University Journal of Science. June 2023;36(2):882-896. doi:10.35378/gujs.1054160
Chicago Gürkan, Duygu, Melih Okur, and İhsan Korkut. “Theoretical and Experimental Comparison of Revolving Vane Compressors and Rolling Piston Compressors”. Gazi University Journal of Science 36, no. 2 (June 2023): 882-96. https://doi.org/10.35378/gujs.1054160.
EndNote Gürkan D, Okur M, Korkut İ (June 1, 2023) Theoretical and Experimental Comparison of Revolving Vane Compressors and Rolling Piston Compressors. Gazi University Journal of Science 36 2 882–896.
IEEE D. Gürkan, M. Okur, and İ. Korkut, “Theoretical and Experimental Comparison of Revolving Vane Compressors and Rolling Piston Compressors”, Gazi University Journal of Science, vol. 36, no. 2, pp. 882–896, 2023, doi: 10.35378/gujs.1054160.
ISNAD Gürkan, Duygu et al. “Theoretical and Experimental Comparison of Revolving Vane Compressors and Rolling Piston Compressors”. Gazi University Journal of Science 36/2 (June 2023), 882-896. https://doi.org/10.35378/gujs.1054160.
JAMA Gürkan D, Okur M, Korkut İ. Theoretical and Experimental Comparison of Revolving Vane Compressors and Rolling Piston Compressors. Gazi University Journal of Science. 2023;36:882–896.
MLA Gürkan, Duygu et al. “Theoretical and Experimental Comparison of Revolving Vane Compressors and Rolling Piston Compressors”. Gazi University Journal of Science, vol. 36, no. 2, 2023, pp. 882-96, doi:10.35378/gujs.1054160.
Vancouver Gürkan D, Okur M, Korkut İ. Theoretical and Experimental Comparison of Revolving Vane Compressors and Rolling Piston Compressors. Gazi University Journal of Science. 2023;36(2):882-96.