Year 2010,
Volume: 23 Issue: 3, 299 - 304, 06.07.2010
Okyay Kiracıoğlu
Ömer Civalek
References
- Endo, M., Kimura, N., “An alternative formulation
- of boundary value problem for the Timoshenko
- beam and Mindlin plate”, Journal of Sound and
- Vibration, 301(1-2): 355-373 (2007).
- Leung, A.Y.T., Chan, J.K.W., “Fourier p-element for the analysis of beams and plates”, Journal of Sound and Vibration., 212(1):179-185 (1998).
- Laura, P.A.A., Gutierrez, R.H., “Analysis of vibrating Timoshenko beams using the method of differential quadrature”, Shock and Vibration, 1: 89-93 (1993).
- Lee, U., Kim, J., Leung, A.Y.T., “The spectral element method in structural dynamics”, The Shock and Vibration Digest, 32(6): 451-466 (2000).
- Han, S.M., Benaroya, H., Wei, T., “Dynamics of transversely engineering theory”, Journal of Sound and Vibration, 225(5): 935-988 (1999). using four
- Ferreira, A.J.M., Fasshauer, G.E., “Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method”, Computer Methods in Applied Mechanics and Engineering, 196: 134-146 (2006).
- Ferreira, A.J.M., Roque, C.M.C., Martins, P.A.L.S., “Radial basis functions and higher-order shear deformation theories in the analysis of laminated Composite Structures, 66: 287-293 (2004). and plates”,
- Şimşek, M., Kocatürk, T., “Free vibration analysis of beams by using third-order shear deformation theory”, Sadhana, 32(3): 167-179 (2007).
- Kocatürk, T., “Determination of The Steady State Response of Viscoelastically Supported Cantilever Beam Under Sinusoidal Base Excitation”, Journal of Sound and Vibration, 281(3-5): 1145-1156 (2005).
- Kocatürk, T., Şimşek, M., “Vibration of Viscoelastic Beams Subjected to An Eccentric Compressive Force and A Concentrated Moving Harmonic Force”, Journal of Sound and Vibration, 291: 302–322 (2006).
- Kocatürk, T., Şimşek, M., “Dynamic Analysis of Eccentrically Timoshenko Beams Under a Moving Harmonic Load”, Computers & Structures, 84: 2113-27 (2006). Viscoelastic
- Wang, C.M., Chen, C.C., Kitipornchai, S., “Shear deformable bending solutions for nonuniform beams and plates with elastic end restraints from classical Mechanics, 68: 323-333 (1998). of Applied
- Wang, CM., Yang, T.Q., Lam, K.Y., “Viscoelastic Timoshenko beam solutions from Euler-Bernoulli solutions”, Journal of Engineering Mechanics ASCE,123(7): 746-748 (1997). [22] Wang, C.M., “Timoshenko solutions in terms of Euler-Bernoulli solutions”, Journal of Engineering Mechanics ASCE, 121(6): 763-765 (1994). beam-bending
- Wang, C.M., Tan, V.B.C., Zhang, T.Y., “Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes”, Journal of Sound and Vibration, 294: 1060-1072 (2006).
- Reddy, J.N., Wang, C.M., Lam, K.Y., “Unified finite elements based on the classical and shear deformation theories of beams and axisymmetric circular plates”, Communications in Numerical Methods in Engineering,13: 495-510 (1997).
- Reddy, J.N., “On the dynamic behaviour of the Timoshenko beam finite elements”, Sadhana, 24(3):175-198 (1999).
- Wei, G.W., “Discrete singular convolution for the solution of the Fokker–Planck equations”, Journal of Chem Physics, 110: 8930-8942 (1999).
- Wei, G.W., “Wavelets generated by using discrete singular convolution kernels”, Journal of Physics A: Mathematical and General, 33: 8577-8596 (2000).
- Wei, G.W., Zhang, D.S., Althorpe, S.C., Kouri, D.J., approximating functional method for solving the Navier-Stokes equation”, Computer Physics Communications, 115: 18-24 (1998).
- Wei, G.W., “A new algorithm for solving some mechanical Applied Mechanics and Engineering, 190: 2017- 2030 (2001). Computer Methods
- Wei, G.W., “Vibration analysis by discrete singular convolution”, Journal of Sound and Vibration, 244: 535-553 (2001).
- Wei, G.W., “Discrete singular convolution for beam analysis”, Engineering Structures, 23: 1045-1053 (2001).
- Wei, G.W., Zhao, Y.B., Xiang, Y., “Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm”, International Journal for Numerical Methods in Engineering, 55: 913-946 (2002).
- Zhao, Y.B., Wei, G.W., Xiang, Y., “Discrete singular convolution for the prediction of high frequency vibration of plates”, International Journal of Solids and Structures, 39: 65-88 (2002).
- Zhao, Y.B., Wei, G.W., Xiang, Y., “Plate vibration under irregular internal supports”, International Journal of Solids and Structures, 39: 1361-1383 (2002).
- Zhao, Y.B., Wei, G.W., “DSC analysis of rectangular plates with non-uniform boundary conditions”, Journal of Sound and Vibration, 255(2): 203-228 (2002).
- Zhao, Y.B., Wei, G.W., Xiang, Y., “Discrete singular convolution for the prediction of high frequency vibration of plates”, International Journal of Solids and Structures, 39: 65-88 (2002).
- Civalek, Ö., “An efficient method for free vibration analysis of rotating truncated conical shells”, International Journal of Pressure Vessels and Piping, 83: 1-12 (2006).
- Civalek, Ö., “Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods”, Applied Mathematical Modeling, 31: 606-624 (2007).
- Civalek, Ö., “Frequency analysis of isotropic conical shells by discrete singular convolution (DSC)”, International Journal of Structural Engineering and Mechanics, 25(1): 127-131 (2007).
- Civalek, Ö., “Free vibration analysis of composite conical shells using the discrete singular convolution algorithm”, Steel and Composite Structures, 6(4): 353-366(2006). [41] Civalek, Ö.,
- “Three-dimensional vibration,
- buckling and bending analyses of thick rectangular
- plates based on discrete singular convolution
- method”, International Journal of Mechanical
- Sciences, 49: 752–765 (2007).
- Alyavuz, B., “Ayrık Tekil Konvolüsyon Yöntemi ile iki Boyutlu Isı Probleminin MATLAB Ortamında Çözümü”, International Journal of Engineering Research & Development, 1(1):56- 42 (2009).
Free Vibration Analysis of Shear Deformable Beams by Discrete Singular Convolution Technique
Year 2010,
Volume: 23 Issue: 3, 299 - 304, 06.07.2010
Okyay Kiracıoğlu
Ömer Civalek
Abstract
In this study, free vibration of shear deformable beams was investigated. Discrete singular convolution (DSC) method is used for free vibration problem of numerical solution of shear deformable beams. Numerical results are presented and compared with that available in the literature. It is shown that reasonable accurate results are obtained.
References
- Endo, M., Kimura, N., “An alternative formulation
- of boundary value problem for the Timoshenko
- beam and Mindlin plate”, Journal of Sound and
- Vibration, 301(1-2): 355-373 (2007).
- Leung, A.Y.T., Chan, J.K.W., “Fourier p-element for the analysis of beams and plates”, Journal of Sound and Vibration., 212(1):179-185 (1998).
- Laura, P.A.A., Gutierrez, R.H., “Analysis of vibrating Timoshenko beams using the method of differential quadrature”, Shock and Vibration, 1: 89-93 (1993).
- Lee, U., Kim, J., Leung, A.Y.T., “The spectral element method in structural dynamics”, The Shock and Vibration Digest, 32(6): 451-466 (2000).
- Han, S.M., Benaroya, H., Wei, T., “Dynamics of transversely engineering theory”, Journal of Sound and Vibration, 225(5): 935-988 (1999). using four
- Ferreira, A.J.M., Fasshauer, G.E., “Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method”, Computer Methods in Applied Mechanics and Engineering, 196: 134-146 (2006).
- Ferreira, A.J.M., Roque, C.M.C., Martins, P.A.L.S., “Radial basis functions and higher-order shear deformation theories in the analysis of laminated Composite Structures, 66: 287-293 (2004). and plates”,
- Şimşek, M., Kocatürk, T., “Free vibration analysis of beams by using third-order shear deformation theory”, Sadhana, 32(3): 167-179 (2007).
- Kocatürk, T., “Determination of The Steady State Response of Viscoelastically Supported Cantilever Beam Under Sinusoidal Base Excitation”, Journal of Sound and Vibration, 281(3-5): 1145-1156 (2005).
- Kocatürk, T., Şimşek, M., “Vibration of Viscoelastic Beams Subjected to An Eccentric Compressive Force and A Concentrated Moving Harmonic Force”, Journal of Sound and Vibration, 291: 302–322 (2006).
- Kocatürk, T., Şimşek, M., “Dynamic Analysis of Eccentrically Timoshenko Beams Under a Moving Harmonic Load”, Computers & Structures, 84: 2113-27 (2006). Viscoelastic
- Wang, C.M., Chen, C.C., Kitipornchai, S., “Shear deformable bending solutions for nonuniform beams and plates with elastic end restraints from classical Mechanics, 68: 323-333 (1998). of Applied
- Wang, CM., Yang, T.Q., Lam, K.Y., “Viscoelastic Timoshenko beam solutions from Euler-Bernoulli solutions”, Journal of Engineering Mechanics ASCE,123(7): 746-748 (1997). [22] Wang, C.M., “Timoshenko solutions in terms of Euler-Bernoulli solutions”, Journal of Engineering Mechanics ASCE, 121(6): 763-765 (1994). beam-bending
- Wang, C.M., Tan, V.B.C., Zhang, T.Y., “Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes”, Journal of Sound and Vibration, 294: 1060-1072 (2006).
- Reddy, J.N., Wang, C.M., Lam, K.Y., “Unified finite elements based on the classical and shear deformation theories of beams and axisymmetric circular plates”, Communications in Numerical Methods in Engineering,13: 495-510 (1997).
- Reddy, J.N., “On the dynamic behaviour of the Timoshenko beam finite elements”, Sadhana, 24(3):175-198 (1999).
- Wei, G.W., “Discrete singular convolution for the solution of the Fokker–Planck equations”, Journal of Chem Physics, 110: 8930-8942 (1999).
- Wei, G.W., “Wavelets generated by using discrete singular convolution kernels”, Journal of Physics A: Mathematical and General, 33: 8577-8596 (2000).
- Wei, G.W., Zhang, D.S., Althorpe, S.C., Kouri, D.J., approximating functional method for solving the Navier-Stokes equation”, Computer Physics Communications, 115: 18-24 (1998).
- Wei, G.W., “A new algorithm for solving some mechanical Applied Mechanics and Engineering, 190: 2017- 2030 (2001). Computer Methods
- Wei, G.W., “Vibration analysis by discrete singular convolution”, Journal of Sound and Vibration, 244: 535-553 (2001).
- Wei, G.W., “Discrete singular convolution for beam analysis”, Engineering Structures, 23: 1045-1053 (2001).
- Wei, G.W., Zhao, Y.B., Xiang, Y., “Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm”, International Journal for Numerical Methods in Engineering, 55: 913-946 (2002).
- Zhao, Y.B., Wei, G.W., Xiang, Y., “Discrete singular convolution for the prediction of high frequency vibration of plates”, International Journal of Solids and Structures, 39: 65-88 (2002).
- Zhao, Y.B., Wei, G.W., Xiang, Y., “Plate vibration under irregular internal supports”, International Journal of Solids and Structures, 39: 1361-1383 (2002).
- Zhao, Y.B., Wei, G.W., “DSC analysis of rectangular plates with non-uniform boundary conditions”, Journal of Sound and Vibration, 255(2): 203-228 (2002).
- Zhao, Y.B., Wei, G.W., Xiang, Y., “Discrete singular convolution for the prediction of high frequency vibration of plates”, International Journal of Solids and Structures, 39: 65-88 (2002).
- Civalek, Ö., “An efficient method for free vibration analysis of rotating truncated conical shells”, International Journal of Pressure Vessels and Piping, 83: 1-12 (2006).
- Civalek, Ö., “Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods”, Applied Mathematical Modeling, 31: 606-624 (2007).
- Civalek, Ö., “Frequency analysis of isotropic conical shells by discrete singular convolution (DSC)”, International Journal of Structural Engineering and Mechanics, 25(1): 127-131 (2007).
- Civalek, Ö., “Free vibration analysis of composite conical shells using the discrete singular convolution algorithm”, Steel and Composite Structures, 6(4): 353-366(2006). [41] Civalek, Ö.,
- “Three-dimensional vibration,
- buckling and bending analyses of thick rectangular
- plates based on discrete singular convolution
- method”, International Journal of Mechanical
- Sciences, 49: 752–765 (2007).
- Alyavuz, B., “Ayrık Tekil Konvolüsyon Yöntemi ile iki Boyutlu Isı Probleminin MATLAB Ortamında Çözümü”, International Journal of Engineering Research & Development, 1(1):56- 42 (2009).