Year 2015,
Volume: 28 Issue: 1, 1 - 9, 23.02.2015
Fatma Arslan
,
Selma Durmuş
Özlem Çolak
Halit Arslan
References
- Hernandez, P., Sanchez, O., Paton, F., Hernandez, L., “Cyclic voltammetry determination of epinephrine with a carbon fiber ultramicroelectrode”, Talanta, 46:985–991, (1998).
- Felix, E.S., Yamashita, M., Angnes, L., “Epinephrine quantification in pharmaceutical formulations utilizing plant tissue biosensors”, Biosens. Bioelectron., 21:2283– 2289, (2006).
- Kawada, T., Yamasaki, T., Akiyama, T., Sato, T., Shishido, M., Sugimachi, M., Inagaki, M., Alexander, J., Sunagawa, K., “Liquid chromatographic determination of myocardial interstitial epinephrine”, J. Chromatogr. B, 714:375–378, (1998).
- Mataveli, L.R.V., Antunes, J.N., Brigagao, M.R.P.L., Magalhaes, C.S., Wisniewski, C., Luccas, P.O., “Evaluation of a simple and low cost potentiometric biosensor for pharmaceutical and in vivo adrenaline determination”, Biosens. Bioelectron., 26(2):798-802, (2010).
- Deftereos, T.N., Calokerinos, A.C., Efstathiou, C.E., “Flow injection chemiluminometric determination of epinephrine, norepinephrine, dopamine and L-dopa”, Analyst, 118:627–632, (1993).
- Blandini, F., Melzi d'Eril, G.V., Sances, G., Lucarelli, C., Herborg, C., “Simultaneous assay of platelet and plasma catecholamines by HPLC with coulometric detection”, Chromatographia, 36: 164-166, (1993).
- Cooper, B.R., Wightman, R.M., Jorgenson, J.W., “Quantitation of epinephrine and norepinephrine secretion from individual adrenal medullary cells by microcolumn high-performance Chromatogr. B, 653:25-34, (1994). chromatography”, J.
- Shaikh, S.M.T., Manjunatha, D.H., Harikrishna, K., Ramesh, K.C., Kumar, R.S., Seetharamappa , J., “Diazocoupling reaction for the spectrophotometric determination of physiologically active catecholamines in bulk and pharmaceutical preparations”, Journal of Analytical Chemistry, 63:637-642, (2008).
- Kojlo, A., Martinez, C.J., “Spectrofluorimetric flow injection determination of adrenaline with an iodine solid- phase reactor”, Anal. Chim. Acta, 308:334-338, (1995).
- Sucheta, A., Rusling, F.J., “Effect of background charge chronocoulometry Electroanalysis, 3:735-739, (1991). diffusion coefficients by at glassy carbon electrodes”,
- Xizun, W., Linjing, M., Wenzhi, Z., “Impedance of the electrochemical oxidation of epinephrine on a glassy carbon electrode”, J. Electroanal. Chem., 352:295-300, (1993).
- Ciolkowski, E.L., Maness, K.M., Cahill, P.S., Wightman, R.M., Evans, D.H., Fosset, B., Amatore, C., “Disproportionation catecholamines at carbon-fiber microelectrodes”, Anal. Chem., 66:3611-3617, (1994). electrooxidation of Schenk,
- “Electrochemical techniques for the study of brain chemistry”, J. Chem. Educ., 60:311-314, (1983). E., Adams, R.N.,
- Hasebe, Y., Hirano, T., Uchiyama, S., “Determination of catecholamines and uric acid in biological fluids without pretreatment, biosensors”, Sensors and Actuators B, 24:94-97, (1995). chemically amplified
- Ni., J-A., Ju, H-X., Chena, H-Y., Leech, D., “Amperometric determination of epinephrine with an osmium complex and Nafion double-layer membrane modified electrode”, Analytica Chimica Acta, 378:151- 157, (1999).
- Ferry, Y., Leech, D., “Amperometric Detection of Catecholamine Neurotransmitters Using Electrocatalytic Substrate Recycling at a Laccase ”, Electroanalysis, 17(2):113-119, (2005).
- Vianello, F., Ragusa, S., Cambria, M.T., Rigo, A., “A high sensitivity amperometric biosensor using laccase as biorecognition element ”, Biosensors and Bioelectronics, 21:2155–2160, (2006).
- Brondania, D., Scheeren, C.W., Dupont, J., Vieiraa, I.C., “Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline”, Sensors and Actuators B, 140:252–259, (2009).
- Mayer, A.M., Staples, R.C., “Laccase: new functions for an old enzyme”, Phytochemistry, 60:551–565, (2002).
- Durán, N., Rosa, M.A., Annibale, A.D., Gianfreda, L., “Applications (phenoloxidases) immobilized on different supports: a review”, Enzyme Microb. Technol., 31:907–931, (2002). and tyrosinases electrochemically prepared polypyrrole–
- Gouda, M.D., Kumar, M.A., Thakur, M.S., Karanth, N.G., “Enhancement of operational stability of an enzyme biosensor for glucose and sucrose using protein based stabilizing agents”, Biosens. Biolectron., 17:503-507, (2002).
- Tan, X.C., Zhang, J.L., Tan, S.W., Zhao, D.D., Huang, Z.W., Mi, Y., Huang, Z.Y., “Amperometric hydrogen peroxide hemoglobin on a glassy carbon electrode modified with Fe3O4/chitosan core-shell microspheres”, Sensors, 9: 6185-6199, (2009). on immobilization of
- Leite, O.D., Fatibello-Filho, O., Barbosab, A.M. “Determination of catecholamines in pharmaceutical formulations using a biosensor modified with a crude extract of fungi laccase (Pleurotus ostreatus)”, J. Braz. Chem. Soc., 14(2): 297-303, (2003).
- Aynacı, E., Sarı, N., Tümtürk, H., “Immobilization of β-galactosidase on novel polymers having schiff bases”, Artif. Cell Blood Sub., 39:259-266, (2011).
- Arslan, F., Ustabaş, S. and Arslan, H. “An amperometric biosensor for glucose determination prepared polyaniline-polyvinylsulfonate film”, Sensors, 11:8152- 8163, (2011). oxidase immobilized in
- Özdemir, M., Arslan, F., Arslan, H. “An amperometric biosensor for choline determination prepared from choline oxidase immobilized in polypyrrole-polyvinylsulfonate film”, Biotechnology, 40: 280–284, (2012). Blood Substitutes, and Huanga, J., Fanga, H., Liua, C., Gua, E., Jianga, D.,
- “A novel fiber optic biosensor for the determination of adrenaline based on immobilized laccase catalysis”, Analytical 41: Letters, 1430–1442, (2008).
A New Laccase-Based Biosensor for Epinephrine Determination
Year 2015,
Volume: 28 Issue: 1, 1 - 9, 23.02.2015
Fatma Arslan
,
Selma Durmuş
Özlem Çolak
Halit Arslan
Abstract
In this paper, a novel amperometric epinephrine (adrenaline) biosensor with immobilization of laccase on polypyrrole–polyvinylsulphonate (PPy-PVS) film has been a complished. Laccase enzyme were immobilized on PPy-PVS film by cross-linking with glutaraldehyde. Determination of EP was carried out by the reduction of enzymatically produced epinephrinequinone at - 0.220 V vs. Ag/AgCl. The effects of pH and temperature were investigated. There are two linear parts in the region between 0.1 µM-1.0 µM and 1.0 µM-10.0 µM. The storage stability and operation stability of the enzyme electrode were also studied. Interference effects were investigated on response of the biosensor.
References
- Hernandez, P., Sanchez, O., Paton, F., Hernandez, L., “Cyclic voltammetry determination of epinephrine with a carbon fiber ultramicroelectrode”, Talanta, 46:985–991, (1998).
- Felix, E.S., Yamashita, M., Angnes, L., “Epinephrine quantification in pharmaceutical formulations utilizing plant tissue biosensors”, Biosens. Bioelectron., 21:2283– 2289, (2006).
- Kawada, T., Yamasaki, T., Akiyama, T., Sato, T., Shishido, M., Sugimachi, M., Inagaki, M., Alexander, J., Sunagawa, K., “Liquid chromatographic determination of myocardial interstitial epinephrine”, J. Chromatogr. B, 714:375–378, (1998).
- Mataveli, L.R.V., Antunes, J.N., Brigagao, M.R.P.L., Magalhaes, C.S., Wisniewski, C., Luccas, P.O., “Evaluation of a simple and low cost potentiometric biosensor for pharmaceutical and in vivo adrenaline determination”, Biosens. Bioelectron., 26(2):798-802, (2010).
- Deftereos, T.N., Calokerinos, A.C., Efstathiou, C.E., “Flow injection chemiluminometric determination of epinephrine, norepinephrine, dopamine and L-dopa”, Analyst, 118:627–632, (1993).
- Blandini, F., Melzi d'Eril, G.V., Sances, G., Lucarelli, C., Herborg, C., “Simultaneous assay of platelet and plasma catecholamines by HPLC with coulometric detection”, Chromatographia, 36: 164-166, (1993).
- Cooper, B.R., Wightman, R.M., Jorgenson, J.W., “Quantitation of epinephrine and norepinephrine secretion from individual adrenal medullary cells by microcolumn high-performance Chromatogr. B, 653:25-34, (1994). chromatography”, J.
- Shaikh, S.M.T., Manjunatha, D.H., Harikrishna, K., Ramesh, K.C., Kumar, R.S., Seetharamappa , J., “Diazocoupling reaction for the spectrophotometric determination of physiologically active catecholamines in bulk and pharmaceutical preparations”, Journal of Analytical Chemistry, 63:637-642, (2008).
- Kojlo, A., Martinez, C.J., “Spectrofluorimetric flow injection determination of adrenaline with an iodine solid- phase reactor”, Anal. Chim. Acta, 308:334-338, (1995).
- Sucheta, A., Rusling, F.J., “Effect of background charge chronocoulometry Electroanalysis, 3:735-739, (1991). diffusion coefficients by at glassy carbon electrodes”,
- Xizun, W., Linjing, M., Wenzhi, Z., “Impedance of the electrochemical oxidation of epinephrine on a glassy carbon electrode”, J. Electroanal. Chem., 352:295-300, (1993).
- Ciolkowski, E.L., Maness, K.M., Cahill, P.S., Wightman, R.M., Evans, D.H., Fosset, B., Amatore, C., “Disproportionation catecholamines at carbon-fiber microelectrodes”, Anal. Chem., 66:3611-3617, (1994). electrooxidation of Schenk,
- “Electrochemical techniques for the study of brain chemistry”, J. Chem. Educ., 60:311-314, (1983). E., Adams, R.N.,
- Hasebe, Y., Hirano, T., Uchiyama, S., “Determination of catecholamines and uric acid in biological fluids without pretreatment, biosensors”, Sensors and Actuators B, 24:94-97, (1995). chemically amplified
- Ni., J-A., Ju, H-X., Chena, H-Y., Leech, D., “Amperometric determination of epinephrine with an osmium complex and Nafion double-layer membrane modified electrode”, Analytica Chimica Acta, 378:151- 157, (1999).
- Ferry, Y., Leech, D., “Amperometric Detection of Catecholamine Neurotransmitters Using Electrocatalytic Substrate Recycling at a Laccase ”, Electroanalysis, 17(2):113-119, (2005).
- Vianello, F., Ragusa, S., Cambria, M.T., Rigo, A., “A high sensitivity amperometric biosensor using laccase as biorecognition element ”, Biosensors and Bioelectronics, 21:2155–2160, (2006).
- Brondania, D., Scheeren, C.W., Dupont, J., Vieiraa, I.C., “Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline”, Sensors and Actuators B, 140:252–259, (2009).
- Mayer, A.M., Staples, R.C., “Laccase: new functions for an old enzyme”, Phytochemistry, 60:551–565, (2002).
- Durán, N., Rosa, M.A., Annibale, A.D., Gianfreda, L., “Applications (phenoloxidases) immobilized on different supports: a review”, Enzyme Microb. Technol., 31:907–931, (2002). and tyrosinases electrochemically prepared polypyrrole–
- Gouda, M.D., Kumar, M.A., Thakur, M.S., Karanth, N.G., “Enhancement of operational stability of an enzyme biosensor for glucose and sucrose using protein based stabilizing agents”, Biosens. Biolectron., 17:503-507, (2002).
- Tan, X.C., Zhang, J.L., Tan, S.W., Zhao, D.D., Huang, Z.W., Mi, Y., Huang, Z.Y., “Amperometric hydrogen peroxide hemoglobin on a glassy carbon electrode modified with Fe3O4/chitosan core-shell microspheres”, Sensors, 9: 6185-6199, (2009). on immobilization of
- Leite, O.D., Fatibello-Filho, O., Barbosab, A.M. “Determination of catecholamines in pharmaceutical formulations using a biosensor modified with a crude extract of fungi laccase (Pleurotus ostreatus)”, J. Braz. Chem. Soc., 14(2): 297-303, (2003).
- Aynacı, E., Sarı, N., Tümtürk, H., “Immobilization of β-galactosidase on novel polymers having schiff bases”, Artif. Cell Blood Sub., 39:259-266, (2011).
- Arslan, F., Ustabaş, S. and Arslan, H. “An amperometric biosensor for glucose determination prepared polyaniline-polyvinylsulfonate film”, Sensors, 11:8152- 8163, (2011). oxidase immobilized in
- Özdemir, M., Arslan, F., Arslan, H. “An amperometric biosensor for choline determination prepared from choline oxidase immobilized in polypyrrole-polyvinylsulfonate film”, Biotechnology, 40: 280–284, (2012). Blood Substitutes, and Huanga, J., Fanga, H., Liua, C., Gua, E., Jianga, D.,
- “A novel fiber optic biosensor for the determination of adrenaline based on immobilized laccase catalysis”, Analytical 41: Letters, 1430–1442, (2008).