Research Article
BibTex RIS Cite
Year 2015, Volume: 28 Issue: 1, 1 - 9, 23.02.2015

Abstract

References

  • Hernandez, P., Sanchez, O., Paton, F., Hernandez, L., “Cyclic voltammetry determination of epinephrine with a carbon fiber ultramicroelectrode”, Talanta, 46:985–991, (1998).
  • Felix, E.S., Yamashita, M., Angnes, L., “Epinephrine quantification in pharmaceutical formulations utilizing plant tissue biosensors”, Biosens. Bioelectron., 21:2283– 2289, (2006).
  • Kawada, T., Yamasaki, T., Akiyama, T., Sato, T., Shishido, M., Sugimachi, M., Inagaki, M., Alexander, J., Sunagawa, K., “Liquid chromatographic determination of myocardial interstitial epinephrine”, J. Chromatogr. B, 714:375–378, (1998).
  • Mataveli, L.R.V., Antunes, J.N., Brigagao, M.R.P.L., Magalhaes, C.S., Wisniewski, C., Luccas, P.O., “Evaluation of a simple and low cost potentiometric biosensor for pharmaceutical and in vivo adrenaline determination”, Biosens. Bioelectron., 26(2):798-802, (2010).
  • Deftereos, T.N., Calokerinos, A.C., Efstathiou, C.E., “Flow injection chemiluminometric determination of epinephrine, norepinephrine, dopamine and L-dopa”, Analyst, 118:627–632, (1993).
  • Blandini, F., Melzi d'Eril, G.V., Sances, G., Lucarelli, C., Herborg, C., “Simultaneous assay of platelet and plasma catecholamines by HPLC with coulometric detection”, Chromatographia, 36: 164-166, (1993).
  • Cooper, B.R., Wightman, R.M., Jorgenson, J.W., “Quantitation of epinephrine and norepinephrine secretion from individual adrenal medullary cells by microcolumn high-performance Chromatogr. B, 653:25-34, (1994). chromatography”, J.
  • Shaikh, S.M.T., Manjunatha, D.H., Harikrishna, K., Ramesh, K.C., Kumar, R.S., Seetharamappa , J., “Diazocoupling reaction for the spectrophotometric determination of physiologically active catecholamines in bulk and pharmaceutical preparations”, Journal of Analytical Chemistry, 63:637-642, (2008).
  • Kojlo, A., Martinez, C.J., “Spectrofluorimetric flow injection determination of adrenaline with an iodine solid- phase reactor”, Anal. Chim. Acta, 308:334-338, (1995).
  • Sucheta, A., Rusling, F.J., “Effect of background charge chronocoulometry Electroanalysis, 3:735-739, (1991). diffusion coefficients by at glassy carbon electrodes”,
  • Xizun, W., Linjing, M., Wenzhi, Z., “Impedance of the electrochemical oxidation of epinephrine on a glassy carbon electrode”, J. Electroanal. Chem., 352:295-300, (1993).
  • Ciolkowski, E.L., Maness, K.M., Cahill, P.S., Wightman, R.M., Evans, D.H., Fosset, B., Amatore, C., “Disproportionation catecholamines at carbon-fiber microelectrodes”, Anal. Chem., 66:3611-3617, (1994). electrooxidation of Schenk,
  • “Electrochemical techniques for the study of brain chemistry”, J. Chem. Educ., 60:311-314, (1983). E., Adams, R.N.,
  • Hasebe, Y., Hirano, T., Uchiyama, S., “Determination of catecholamines and uric acid in biological fluids without pretreatment, biosensors”, Sensors and Actuators B, 24:94-97, (1995). chemically amplified
  • Ni., J-A., Ju, H-X., Chena, H-Y., Leech, D., “Amperometric determination of epinephrine with an osmium complex and Nafion double-layer membrane modified electrode”, Analytica Chimica Acta, 378:151- 157, (1999).
  • Ferry, Y., Leech, D., “Amperometric Detection of Catecholamine Neurotransmitters Using Electrocatalytic Substrate Recycling at a Laccase ”, Electroanalysis, 17(2):113-119, (2005).
  • Vianello, F., Ragusa, S., Cambria, M.T., Rigo, A., “A high sensitivity amperometric biosensor using laccase as biorecognition element ”, Biosensors and Bioelectronics, 21:2155–2160, (2006).
  • Brondania, D., Scheeren, C.W., Dupont, J., Vieiraa, I.C., “Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline”, Sensors and Actuators B, 140:252–259, (2009).
  • Mayer, A.M., Staples, R.C., “Laccase: new functions for an old enzyme”, Phytochemistry, 60:551–565, (2002).
  • Durán, N., Rosa, M.A., Annibale, A.D., Gianfreda, L., “Applications (phenoloxidases) immobilized on different supports: a review”, Enzyme Microb. Technol., 31:907–931, (2002). and tyrosinases electrochemically prepared polypyrrole–
  • Gouda, M.D., Kumar, M.A., Thakur, M.S., Karanth, N.G., “Enhancement of operational stability of an enzyme biosensor for glucose and sucrose using protein based stabilizing agents”, Biosens. Biolectron., 17:503-507, (2002).
  • Tan, X.C., Zhang, J.L., Tan, S.W., Zhao, D.D., Huang, Z.W., Mi, Y., Huang, Z.Y., “Amperometric hydrogen peroxide hemoglobin on a glassy carbon electrode modified with Fe3O4/chitosan core-shell microspheres”, Sensors, 9: 6185-6199, (2009). on immobilization of
  • Leite, O.D., Fatibello-Filho, O., Barbosab, A.M. “Determination of catecholamines in pharmaceutical formulations using a biosensor modified with a crude extract of fungi laccase (Pleurotus ostreatus)”, J. Braz. Chem. Soc., 14(2): 297-303, (2003).
  • Aynacı, E., Sarı, N., Tümtürk, H., “Immobilization of β-galactosidase on novel polymers having schiff bases”, Artif. Cell Blood Sub., 39:259-266, (2011).
  • Arslan, F., Ustabaş, S. and Arslan, H. “An amperometric biosensor for glucose determination prepared polyaniline-polyvinylsulfonate film”, Sensors, 11:8152- 8163, (2011). oxidase immobilized in
  • Özdemir, M., Arslan, F., Arslan, H. “An amperometric biosensor for choline determination prepared from choline oxidase immobilized in polypyrrole-polyvinylsulfonate film”, Biotechnology, 40: 280–284, (2012). Blood Substitutes, and Huanga, J., Fanga, H., Liua, C., Gua, E., Jianga, D.,
  • “A novel fiber optic biosensor for the determination of adrenaline based on immobilized laccase catalysis”, Analytical 41: Letters, 1430–1442, (2008).

A New Laccase-Based Biosensor for Epinephrine Determination

Year 2015, Volume: 28 Issue: 1, 1 - 9, 23.02.2015

Abstract

In this paper, a novel amperometric epinephrine (adrenaline) biosensor with immobilization of laccase on polypyrrole–polyvinylsulphonate (PPy-PVS) film has been a complished. Laccase enzyme were immobilized on PPy-PVS film by cross-linking with glutaraldehyde. Determination of EP was carried out by the reduction of enzymatically produced epinephrinequinone at - 0.220 V vs. Ag/AgCl. The effects of pH and temperature were investigated. There are two linear parts in the region between 0.1 µM-1.0 µM and 1.0 µM-10.0 µM. The storage stability and operation stability of the enzyme electrode were also studied. Interference effects were investigated on response of the biosensor.

References

  • Hernandez, P., Sanchez, O., Paton, F., Hernandez, L., “Cyclic voltammetry determination of epinephrine with a carbon fiber ultramicroelectrode”, Talanta, 46:985–991, (1998).
  • Felix, E.S., Yamashita, M., Angnes, L., “Epinephrine quantification in pharmaceutical formulations utilizing plant tissue biosensors”, Biosens. Bioelectron., 21:2283– 2289, (2006).
  • Kawada, T., Yamasaki, T., Akiyama, T., Sato, T., Shishido, M., Sugimachi, M., Inagaki, M., Alexander, J., Sunagawa, K., “Liquid chromatographic determination of myocardial interstitial epinephrine”, J. Chromatogr. B, 714:375–378, (1998).
  • Mataveli, L.R.V., Antunes, J.N., Brigagao, M.R.P.L., Magalhaes, C.S., Wisniewski, C., Luccas, P.O., “Evaluation of a simple and low cost potentiometric biosensor for pharmaceutical and in vivo adrenaline determination”, Biosens. Bioelectron., 26(2):798-802, (2010).
  • Deftereos, T.N., Calokerinos, A.C., Efstathiou, C.E., “Flow injection chemiluminometric determination of epinephrine, norepinephrine, dopamine and L-dopa”, Analyst, 118:627–632, (1993).
  • Blandini, F., Melzi d'Eril, G.V., Sances, G., Lucarelli, C., Herborg, C., “Simultaneous assay of platelet and plasma catecholamines by HPLC with coulometric detection”, Chromatographia, 36: 164-166, (1993).
  • Cooper, B.R., Wightman, R.M., Jorgenson, J.W., “Quantitation of epinephrine and norepinephrine secretion from individual adrenal medullary cells by microcolumn high-performance Chromatogr. B, 653:25-34, (1994). chromatography”, J.
  • Shaikh, S.M.T., Manjunatha, D.H., Harikrishna, K., Ramesh, K.C., Kumar, R.S., Seetharamappa , J., “Diazocoupling reaction for the spectrophotometric determination of physiologically active catecholamines in bulk and pharmaceutical preparations”, Journal of Analytical Chemistry, 63:637-642, (2008).
  • Kojlo, A., Martinez, C.J., “Spectrofluorimetric flow injection determination of adrenaline with an iodine solid- phase reactor”, Anal. Chim. Acta, 308:334-338, (1995).
  • Sucheta, A., Rusling, F.J., “Effect of background charge chronocoulometry Electroanalysis, 3:735-739, (1991). diffusion coefficients by at glassy carbon electrodes”,
  • Xizun, W., Linjing, M., Wenzhi, Z., “Impedance of the electrochemical oxidation of epinephrine on a glassy carbon electrode”, J. Electroanal. Chem., 352:295-300, (1993).
  • Ciolkowski, E.L., Maness, K.M., Cahill, P.S., Wightman, R.M., Evans, D.H., Fosset, B., Amatore, C., “Disproportionation catecholamines at carbon-fiber microelectrodes”, Anal. Chem., 66:3611-3617, (1994). electrooxidation of Schenk,
  • “Electrochemical techniques for the study of brain chemistry”, J. Chem. Educ., 60:311-314, (1983). E., Adams, R.N.,
  • Hasebe, Y., Hirano, T., Uchiyama, S., “Determination of catecholamines and uric acid in biological fluids without pretreatment, biosensors”, Sensors and Actuators B, 24:94-97, (1995). chemically amplified
  • Ni., J-A., Ju, H-X., Chena, H-Y., Leech, D., “Amperometric determination of epinephrine with an osmium complex and Nafion double-layer membrane modified electrode”, Analytica Chimica Acta, 378:151- 157, (1999).
  • Ferry, Y., Leech, D., “Amperometric Detection of Catecholamine Neurotransmitters Using Electrocatalytic Substrate Recycling at a Laccase ”, Electroanalysis, 17(2):113-119, (2005).
  • Vianello, F., Ragusa, S., Cambria, M.T., Rigo, A., “A high sensitivity amperometric biosensor using laccase as biorecognition element ”, Biosensors and Bioelectronics, 21:2155–2160, (2006).
  • Brondania, D., Scheeren, C.W., Dupont, J., Vieiraa, I.C., “Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline”, Sensors and Actuators B, 140:252–259, (2009).
  • Mayer, A.M., Staples, R.C., “Laccase: new functions for an old enzyme”, Phytochemistry, 60:551–565, (2002).
  • Durán, N., Rosa, M.A., Annibale, A.D., Gianfreda, L., “Applications (phenoloxidases) immobilized on different supports: a review”, Enzyme Microb. Technol., 31:907–931, (2002). and tyrosinases electrochemically prepared polypyrrole–
  • Gouda, M.D., Kumar, M.A., Thakur, M.S., Karanth, N.G., “Enhancement of operational stability of an enzyme biosensor for glucose and sucrose using protein based stabilizing agents”, Biosens. Biolectron., 17:503-507, (2002).
  • Tan, X.C., Zhang, J.L., Tan, S.W., Zhao, D.D., Huang, Z.W., Mi, Y., Huang, Z.Y., “Amperometric hydrogen peroxide hemoglobin on a glassy carbon electrode modified with Fe3O4/chitosan core-shell microspheres”, Sensors, 9: 6185-6199, (2009). on immobilization of
  • Leite, O.D., Fatibello-Filho, O., Barbosab, A.M. “Determination of catecholamines in pharmaceutical formulations using a biosensor modified with a crude extract of fungi laccase (Pleurotus ostreatus)”, J. Braz. Chem. Soc., 14(2): 297-303, (2003).
  • Aynacı, E., Sarı, N., Tümtürk, H., “Immobilization of β-galactosidase on novel polymers having schiff bases”, Artif. Cell Blood Sub., 39:259-266, (2011).
  • Arslan, F., Ustabaş, S. and Arslan, H. “An amperometric biosensor for glucose determination prepared polyaniline-polyvinylsulfonate film”, Sensors, 11:8152- 8163, (2011). oxidase immobilized in
  • Özdemir, M., Arslan, F., Arslan, H. “An amperometric biosensor for choline determination prepared from choline oxidase immobilized in polypyrrole-polyvinylsulfonate film”, Biotechnology, 40: 280–284, (2012). Blood Substitutes, and Huanga, J., Fanga, H., Liua, C., Gua, E., Jianga, D.,
  • “A novel fiber optic biosensor for the determination of adrenaline based on immobilized laccase catalysis”, Analytical 41: Letters, 1430–1442, (2008).
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemistry
Authors

Fatma Arslan

Selma Durmuş This is me

Özlem Çolak This is me

Halit Arslan This is me

Publication Date February 23, 2015
Published in Issue Year 2015 Volume: 28 Issue: 1

Cite

APA Arslan, F., Durmuş, S., Çolak, Ö., Arslan, H. (2015). A New Laccase-Based Biosensor for Epinephrine Determination. Gazi University Journal of Science, 28(1), 1-9.
AMA Arslan F, Durmuş S, Çolak Ö, Arslan H. A New Laccase-Based Biosensor for Epinephrine Determination. Gazi University Journal of Science. February 2015;28(1):1-9.
Chicago Arslan, Fatma, Selma Durmuş, Özlem Çolak, and Halit Arslan. “A New Laccase-Based Biosensor for Epinephrine Determination”. Gazi University Journal of Science 28, no. 1 (February 2015): 1-9.
EndNote Arslan F, Durmuş S, Çolak Ö, Arslan H (February 1, 2015) A New Laccase-Based Biosensor for Epinephrine Determination. Gazi University Journal of Science 28 1 1–9.
IEEE F. Arslan, S. Durmuş, Ö. Çolak, and H. Arslan, “A New Laccase-Based Biosensor for Epinephrine Determination”, Gazi University Journal of Science, vol. 28, no. 1, pp. 1–9, 2015.
ISNAD Arslan, Fatma et al. “A New Laccase-Based Biosensor for Epinephrine Determination”. Gazi University Journal of Science 28/1 (February 2015), 1-9.
JAMA Arslan F, Durmuş S, Çolak Ö, Arslan H. A New Laccase-Based Biosensor for Epinephrine Determination. Gazi University Journal of Science. 2015;28:1–9.
MLA Arslan, Fatma et al. “A New Laccase-Based Biosensor for Epinephrine Determination”. Gazi University Journal of Science, vol. 28, no. 1, 2015, pp. 1-9.
Vancouver Arslan F, Durmuş S, Çolak Ö, Arslan H. A New Laccase-Based Biosensor for Epinephrine Determination. Gazi University Journal of Science. 2015;28(1):1-9.