BibTex RIS Cite

Prolongations of Golden Structure to Tangent Bundle of Order 2

Year 2015, Volume: 28 Issue: 2, 253 - 258, 22.06.2015

Abstract

In this paper, we study 2nd lift of golden structure to tangent bundle of order 2. We investigate integrability and parallelism of Gloden structures in $T_2(M)$. Moreover, we define golden semi-Riemannian metric in $T_2(M)$.

References

  • Ianuş, S., “Sur les structures presque produit des varietes a connection lineaire”, C.R.A.S. Paris, 272, 734-735, (1971).
  • Mathai, S., “Prolongations of − structure to tangent bundle of order 2”, Indian J. Pure Appl. Math., 6 (10), 1180-1184, (1975).
  • Özdemir, F., Crasmareanu, M., “Geometrical objects associated to a substructure”, Turk. J. Math., 34, 1-12, (2010).
  • Özkan, M., “Prolongations of Golden structures to tangent bundles”, Diff. Geom. Dyn. Syst., 16, 227-238, (2014).
  • Yano, K., Ishihara, S., “Differential geometry of tangent bundle of order 2”, Kodai Math. Sem. Rep., 20, 318-354, (1968).
  • Yano, K., Ishihara, S., Tangent and cotangent bundle, Marcel Dekker Inc., New York, (1973).

Prolongations of Golden Structure to Tangent Bundle of Order 2

Year 2015, Volume: 28 Issue: 2, 253 - 258, 22.06.2015

Abstract

References

  • Ianuş, S., “Sur les structures presque produit des varietes a connection lineaire”, C.R.A.S. Paris, 272, 734-735, (1971).
  • Mathai, S., “Prolongations of − structure to tangent bundle of order 2”, Indian J. Pure Appl. Math., 6 (10), 1180-1184, (1975).
  • Özdemir, F., Crasmareanu, M., “Geometrical objects associated to a substructure”, Turk. J. Math., 34, 1-12, (2010).
  • Özkan, M., “Prolongations of Golden structures to tangent bundles”, Diff. Geom. Dyn. Syst., 16, 227-238, (2014).
  • Yano, K., Ishihara, S., “Differential geometry of tangent bundle of order 2”, Kodai Math. Sem. Rep., 20, 318-354, (1968).
  • Yano, K., Ishihara, S., Tangent and cotangent bundle, Marcel Dekker Inc., New York, (1973).
There are 6 citations in total.

Details

Primary Language English
Journal Section Mathematics
Authors

Mustafa Özkan

Ayşe Çıtlak

Emel Taylan This is me

Publication Date June 22, 2015
Published in Issue Year 2015 Volume: 28 Issue: 2

Cite

APA Özkan, M., Çıtlak, A., & Taylan, E. (2015). Prolongations of Golden Structure to Tangent Bundle of Order 2. Gazi University Journal of Science, 28(2), 253-258.
AMA Özkan M, Çıtlak A, Taylan E. Prolongations of Golden Structure to Tangent Bundle of Order 2. Gazi University Journal of Science. June 2015;28(2):253-258.
Chicago Özkan, Mustafa, Ayşe Çıtlak, and Emel Taylan. “Prolongations of Golden Structure to Tangent Bundle of Order 2”. Gazi University Journal of Science 28, no. 2 (June 2015): 253-58.
EndNote Özkan M, Çıtlak A, Taylan E (June 1, 2015) Prolongations of Golden Structure to Tangent Bundle of Order 2. Gazi University Journal of Science 28 2 253–258.
IEEE M. Özkan, A. Çıtlak, and E. Taylan, “Prolongations of Golden Structure to Tangent Bundle of Order 2”, Gazi University Journal of Science, vol. 28, no. 2, pp. 253–258, 2015.
ISNAD Özkan, Mustafa et al. “Prolongations of Golden Structure to Tangent Bundle of Order 2”. Gazi University Journal of Science 28/2 (June 2015), 253-258.
JAMA Özkan M, Çıtlak A, Taylan E. Prolongations of Golden Structure to Tangent Bundle of Order 2. Gazi University Journal of Science. 2015;28:253–258.
MLA Özkan, Mustafa et al. “Prolongations of Golden Structure to Tangent Bundle of Order 2”. Gazi University Journal of Science, vol. 28, no. 2, 2015, pp. 253-8.
Vancouver Özkan M, Çıtlak A, Taylan E. Prolongations of Golden Structure to Tangent Bundle of Order 2. Gazi University Journal of Science. 2015;28(2):253-8.