Research Article
BibTex RIS Cite
Year 2023, Volume: 36 Issue: 3, 1351 - 1367, 01.09.2023
https://doi.org/10.35378/gujs.1075405

Abstract

References

  • [1] Shockley, W., Queisser H.J., “Detailed balance limit of efficiency of p‐n junction solar cells”, Journal of Applied Physics, 32(3): 510-519, (1961).
  • [2] Green, M.A., Dunlop, E.D., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X., “Solar cell efficiency tables (version 59)”, Progress in Photovoltaics: Research and Applications, 30: 3-12, (2022).
  • [3] Wilson, G., Al-Jassim, M.M., Metzger, W., Glunz, S.W., Verlinden, P., Gang, X., Mansfield, L., Stanbery, B.J., Zhu, K., Yan, Y. “The 2020 Photovoltaic Technologies Roadmap”, Journal of Physics D: Applied Physics, 53(49): 493001, (2020).
  • [4] Mufti, N., Amrillah, T., Taufiq, A., Diantoro, M., Nur, H., “Review of CIGS-based solar cells manufacturing by structural engineering”, Solar Energy, 207: 1146-1157, (2020).
  • [5] Sinha, T., Lilhare, D., Khare, A., “A review on the improvement in performance of CdTe/CdS thin-film solar cells through optimization of structural parameters”, Journal of Materials Science, 54(19): 12189-12205, (2019).
  • [6] Prabeesh, P., Sajeesh, V., Selvam, I.P., Bharati, M.D., Rao, G.M., Potty, S., “CZTS solar cell with non-toxic buffer layer: A study on the sulphurization temperature and absorber layer thickness”, Solar Energy, 207: 419-427, (2020).
  • [7] Kowsar, A., Farhad, S.F.U., Rahaman, M., Islam, M.S., Imam, A.Y., Debnath, S.C., Sultana, M., Hoque, M.A., Sharmin, A., Mahmood, Z.H., “Progress in major thin-film solar cells: Growth technologies, layer materials and efficiencies”, International Journal of Renewable Energy Research, 9(2): 579-597, (2019).
  • [8] Kato, T., Wu, J.-L., Hirai, Y., Sugimoto, H., Bermudez, V., “Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu(In, Ga)(Se, S)2”, IEEE Journal of Photovoltaics, 9(1): 325-330, (2018).
  • [9] PV Magazine, First Solar raises bar for CdTe with 21.5% efficiency record, (2015).
  • [10] Yan, C., Huang, J., Sun, K., Johnston, S., Zhang, Y., Sun, H., Pu, A., He, M., Liu, F., Eder, K. “Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment”, Nature Energy, 3(9): 764-772, (2018).
  • [11] Tao, J., Liu, J., Chen, L., Cao, H., Meng, X., Zhang, Y., Zhang, C., Sun, L., Yang, P., Chu, J., “7.1% efficient co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers”, Green Chemistry, 18(2): 550-557, (2016).
  • [12] Kogler, W., Schnabel, T., Ahlswede, E., Taskesen, T., Gütay, L., Hauschild, D., Weinhardt, L., Heske, C., Seeger, J. Hetterich, M., “Hybrid chemical bath deposition-CdS/sputter-Zn(O, S) alternative buffer for Cu2ZnSn(S, Se)4 based solar cells”, Journal of Applied Physics, 127(16): 165301, (2020).
  • [13] Jiang, F., Ozaki, C., Harada, T., Tang, Z., Minemoto, T., Nose, Y., and Ikeda, S., “Effect of indium doping on surface optoelectrical properties of Cu2ZnSnS4 photoabsorber and interfacial/photovoltaic performance of cadmium free In2S3/Cu2ZnSnS4 heterojunction thin film solar cell”, Chemistry of Materials, 28(10): 3283-3291, (2016).
  • [14] Chantana, J., Kato, T., Sugimoto, H., and Minemoto, T., “Heterointerface recombination of Cu(In, Ga)(S, Se)2‐based solar cells with different buffer layers”, Progress in Photovoltaics: Research and Applications, 26(2): 127-134, (2018).
  • [15] Galarza Gutiérrez, U., de Albor Aguilera, M.L., Hernández Vasquez, C., Flores Márquez, J.M., González Trujillo, M.A., Jiménez Olarte, D., Aguilar Hernández, J.R., Remolina Millán, A., “Structural and Optoelectronic Properties of β‐In2S3 Thin Films to be Applied on Cadmium Reduced Solar Cells”, physica status solidi (a), 215(4): 1700428, (2018).
  • [16] Mughal, M.A., Engelken, R., Sharma, R., “Progress in indium (III) sulfide (In2S3) buffer layer deposition techniques for CIS, CIGS, and CdTe-based thin film solar cells”, Solar Energy, 120: 131-146, (2015).
  • [17] Soni, P., Raghuwanshi, M., Wuerz, R., Berghoff, B., Knoch, J., Raabe, D., Cojocaru‐Mirédin, O., “Sputtering as a viable route for In2S3 buffer layer deposition in high efficiency Cu(In, Ga)Se2 solar cells”, Energy Science & Engineering, 7(2): 478-487, (2019).
  • [18] Pistor, P., Merino Álvarez, J.M., León, M., Di Michiel, M., Schorr, S., Klenk, R., Lehmann, S., “Structure reinvestigation of α-, β-and γ-In2S3”, Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 72(3): 410-415, (2016).
  • [19] Rasool, S., Saritha, K.R. Reddy, K., Tivanov, M., Trofimova, A., Tikoto, S., Bychto, L., Patryn, A., Maliński, M., Gremenok, V., “Effect of annealing on the physical properties of thermally evaporated In2S3 thin films”, Current Applied Physics, 19: 108-113, (2019).
  • [20] Stumph, P., Baranova, K., Rogovoy, M., Bunakov, V., Maraeva, E., Tulenin, S., “Chemical bath deposition of In2S3 thin films as promising material and buffer layer for solar cells”, AIP Conference ProceedingsAIP Publishing LLC, 2063(1): 040057, (2019).
  • [21] Souissi, R., Bouguila, N., Bendahan, M., Fiorido, T., Aguir, K., Kraini, M., Vázquez-Vázquez, C., Labidi, A., “Highly sensitive nitrogen dioxide gas sensors based on sprayed β-In2S3 film”, Sensors and Actuators B: Chemical, 319: 128280, (2020).
  • [22] Sterner, J., Malmström, J., Stolt, L., “Study on ALD In2S3/Cu (In, Ga) Se2 interface formation”, Progress in Photovoltaics: Research and Applications, 13(3): 179-193, (2005).
  • [23] Mughal, M.A., Alqudsi, A., Rao, P.M., Masroor, M., Ichwani, R., Zhou, L., Giri, B., “All-electrodeposited p-Cu2ZnSnS4/n-In2S3 Heterojunction Formation for Solar Cell Applications”, 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) IEEE, 142-147, (2018).
  • [24] Karthikeyan, S., Hill, A.E., Pilkington, R.D., “Low temperature pulsed direct current magnetron sputtering technique for single phase β-In2S3 buffer layers for solar cell applications”, Applied Surface Science, 418: 199-206, (2017).
  • [25] Ji, Y., Ou, Y., Yu, Z., Yan, Y., Wang, D., Yan, C., Liu, L., Zhang, Y., Zhao, Y., “Effect of film thickness on physical properties of RF sputtered In2S3 layers”, Surface and Coatings Technology, 276: 587-594, (2015).
  • [26] Spiering, S., Nowitzki, A., Kessler, F., Igalson, M., Maksoud, H.A., “Optimization of buffer-window layer system for CIGS thin film devices with indium sulphide buffer by in-line evaporation”, Solar Energy Mat. Sol. C., 144: 544-550, (2016).
  • [27] Kim, J., Hiroi, H., Todorov, T.K., Gunawan, O., Kuwahara, M., Gokmen, T., Nair, D., Hopstaken, M., Shin, B., Lee, Y.S, “High efficiency Cu2ZnSn (S, Se)4 solar cells by applying a double In2S3/CdS emitter”, Advanced Materials, 26(44): 7427-7431, (2014).
  • [28] Hariskos, D., Spiering, S., Powalla, M., “Buffer layers in Cu (In, Ga) Se2 solar cells and modules”, Thin Solid Films, 480: 99-109, (2005).
  • [29] Abou-Ras, D., Kostorz, G., Hariskos. D., Menner, R., Powalla, M., Schorr, S., Tiwari, A., “Structural and chemical analyses of sputtered InxSy buffer layers in Cu (In, Ga) Se2 thin-film solar cells”, Thin Solid Films, 517(8): 2792-2798, (2009).
  • [30] Hariskos, D., Hempel, W., Menner, R., Witte, W., “Influence of Substrate Temperature during InxSy Sputtering on Cu (In, Ga) Se2/Buffer Interface Properties and Solar Cell Performance”, Applied Sciences, 10(3): 1052, (2020).
  • [31] Wang, S., Shiou, F., Tsao, C., Huang, S., Hsu, C., “An evaluation of the deposition parameters for indium sulfide (In2S3) thin films using the grey-based Taguchi method”, Materials Science in Semiconductor Processing, 16: 1879-1887, (2013).
  • [32] Hwang, D.H., Cho, S., Hui, K.N., Son, Y.G., “Effect of sputtering power on structural and optical properties of radio frequency-sputtered In2S3 thin films”, Journal of Nanoscience and Nanotechnology, 14: 8978-8981, (2014).
  • [33] Siol, S., Dhakal, T.P., Gudavalli, G.S., Rajbhandari, P.P., DeHart, C., Baranowski, L.L., and Zakutayev, A., “Combinatorial reactive sputtering of In2S3 as an alternative contact layer for thin film solar cells”, Acs Applied Materials & Interfaces, 8: 14004-14011, (2016).
  • [34] Soni, P., Raghuwanshi, M., Wuerz, R., Berghoff, B., Knoch, J., Raabe, D., Cojocaru-Mirédin, O., “Role of elemental intermixing at the In2S3/CIGSe heterojunction deposited using reactive RF magnetron sputtering”, Solar Energy Materials & Solar Cells, 195: 367-375, (2019).
  • [35] Gremenok, V.F., Ramakrishna Reddy, K., Tivanov, M.S., Patryn, A., “Effect of annealing on the Structure of thermal evaporated In2S3 thin films”, Przegląd Elektrotechniczny, 93: 89-91, (2017).
  • [36] Sandoval-Paz, M., Sotelo-Lerma, M., Valenzuela-Jauregui, J., Flores-Acosta, M., Ramırez-Bon, R., “Structural and optical studies on thermal-annealed In2S3 films prepared by the chemical bath deposition technique”, Thin Solid Films, 472: 5-10, (2005).
  • [37] Rasool, S., Saritha, K., Reddy, K.R., Bychto, L., Patryn, A., Maliński, M., Tivanov, M., Gremenok, V., “Optoelectronic properties of In2S3 thin films measured using surface photovoltage spectroscopy”, Materials Research Express, 6: 076417, (2019).
  • [38] Timoumi, A., Bouzouita, H., Brini, R., Kanzari, M., Rezig, B., “Optimization of annealing conditions of In2S3 thin films deposited by vacuum thermal evaporation”, Applied Surface Science, 253: 306-310, (2006).
  • [39] Nehra, S., Chander, S., Sharma, A., Dhaka, M., “Effect of thermal annealing on physical properties of vacuum evaporated In2S3 buffer layer for eco-friendly photovoltaic applications”, Materials Science Semiconductor Processing, 40: 26-34, (2015).
  • [40] Rietveld, H.M., “A profile refinement method for nuclear and magnetic structures”, Journal of Applied Crystallography, 2(2): 65-71, (1969).
  • [41] Lutterotti, L., Matthies, S. and Wenk, H.-R., “MAUD (material analysis using diffraction): a user friendly Java program for Rietveld texture analysis and more”, Proceeding of the twelfth international conference on textures of materials, (ICOTOM-12) NRC Research Press Ottowa, Canada, 1: 1599, (1999).
  • [42] Cullity, B.D., Stock, S.R., “Elements of X-Ray Diffraction”, Third Edition, Pearson, U.K., (2014).
  • [43] Tiss, B., Erouel, M., Bouguila, N., Kraini, M., and Khirouni, K., “Effect of silver doping on structural and optical properties of In2S3 thin films fabricated by chemical pyrolysis”, Journal of Alloys and Compounds, 771: 60-66, (2019).
  • [44] Williamson, G., Smallman, R., III. “Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum”, Philosophical Magazine, 1: 34, (1956).
  • [45] Thanikaikarasan, S., “Role of electrolyte concentration on growth kinetics, film thickness, structural, compositional and optical properties of cadmoselite thin films through electrochemical route”, Journal of Alloys and Compounds, 885: 160963, (2021).
  • [46] Mahmood, W., Ali, J., Zahid, I., Thomas, A., ul Haq, A., “Optical and electrical studies of CdS thin films with thickness variation”, Optik, 158: 1558-1566, (2018).
  • [47] Kumar, B.H., Kumar, M.S., “On the conversion of amorphous In2S3 thin films to polycrystalline In2S3 and to In2O3 through thermal oxidation process”, Materials Science in Semiconductor Processing, 111: 104983, (2020).
  • [48] Rao, P., Kumar, S., “Growth of stoichiometric indium sulfide films by thermal evaporation: Influence of vacuum annealing on structural and physical properties”, Thin Solid Films, 524: 93-99, (2012).
  • [49] Assili, K., Selmi, W., Alouani, K., Vilanova, X., “Computational study and characteristics of In2S3 thin films: effects of substrate nature and deposition temperature”, Semiconductor Science and Technology, 34(4): 045006, (2019).
  • [50] Lugo-Loredo, S., Peña-Méndez, Y., Calixto-Rodriguez, M., Messina-Fernández, S., Alvarez-Gallegos, A., Vázquez-Dimas, A. and Hernández-García, T., “Indium sulfide thin films as window layer in chemically deposited solar cells”, Thin Solid Films, 550: 110-113, (2014).
  • [51] Tivanov, M., Svito, I., Rasool, S., Saritha, K., Reddy, K.R., Gremenok, V., “Effect of heat treatment in sulfur on structural, optical and electrical properties of thermally evaporated In2S3 thin films”, Solar Energy, 222: 290-297, (2021).
  • [52] Hashemi, M., Minbashi, M., Ghorashi, S.M.B., Ghobadi, A., “A modeling study on utilizing low temperature sprayed In2S3 as the buffer layer of CuBaSn(S, Se) solar cells”, Scientific Reports, 11(1): 1-11, (2021).
  • [53] Kim, W.T., Kim, C.D., “Optical energy gaps of β‐In2S3 thin films grown by spray pyrolysis”, Journal of Applied Physics, 60(7): 2631-2633, (1986).
  • [54] Ho, C.H., “Growth and characterization of near-band-edge transitions in β-In2S3 single crystals”, Journal of Crystal Growth, 312(19): 2718-2723, (2010).
  • [55] Kraini, M., Bouguila, N., Halidou, I., Moadhen, A., Vázquez-Vázquez, C., López-Quintela, M., Alaya, S., “Study of optical and electrical properties of In2S3: Sn films deposited by spray pyrolysis”, Journal of Electronic Materials, 44(7): 2536-2543, (2015).
  • [56] Ho, C.-H., Lin, M.-H., Wang, Y.-P., Huang, Y.-S., “Synthesis of In2S3 and Ga2S3 crystals for oxygen sensing and UV photodetection”, Sensors and Actuators A: Physical, 245: 119-126, (2016).
  • [57] Jayakrishnan, R., “Photoluminescence in Spray Pyrolysis Deposited β-In2S3 Thin Films”, Journal of Electronic Materials, 47(4): 2249-2256, (2018).
  • [58] Jayakrishnan, R., John, T.T., Kartha, C.S., Vijayakumar, K., Jain, D., Chandra, L.S., Ganesan, V., “Do the grain boundaries of β-In2S3 thin films have a role in sub-band-gap photosensitivity to 632.8 nm?”, Journal of Applied Physics, 103(5): 053106, (2008).
  • [59] Rajeshmon, V., Poornima. N., Kartha, C.S., Vijayakumar, K., “Modification of the optoelectronic properties of sprayed In2S3 thin films by indium diffusion for application as buffer layer in CZTS based solar cell”, Journal of Alloys and Compounds, 553: 239-244, (2013).
  • [60] Jayakrishnan, R., Sebastian, T., Sudha Kartha, C., Vijayakumar, K., “Effect of defect bands in β-In2S3 thin films”, Journal of Applied Physics, 111(9): 093714, (2012).
  • [61] Cao, G., Zhao, Y., Wu, Z., “Synthesis and characterization of In2S3 nanoparticles”, Journal of Alloys and Compounds, 472(1-2): 325-327, (2009).
  • [62] Salem, Y.B., Kilani, M., Kamoun, N., “Effect of deposition runs on the physical properties of In2S3 chemically synthesized for photocatalytic application”, Results in Physics, 10: 706-713, (2018).
  • [63] Souli, M., Bensalem. Y., Secu, M., Bartha, C., Enculescu, M., Mejri, A., Kamoun-Turki, N., Badica, P., “Effect of high gamma radiations on physical properties of In2S3 thin films grown by chemical bath deposition for buffer layer applications”, Results in Physics, 13: 102115, (2019).

Effect of Post-thermal Annealing on the Structural, Morphological, and Optical Properties of RF-sputtered In2S3 Thin Films

Year 2023, Volume: 36 Issue: 3, 1351 - 1367, 01.09.2023
https://doi.org/10.35378/gujs.1075405

Abstract

Indium sulfide films were deposited by radio frequency magnetron sputtering technique on soda lime glass substrate. The deposition was conducted at the temperature of 150 °C and prepared films were then thermally annealed under argon atmosphere at 350 °C and 450 °C for 30 min. The impact of post-thermal annealing treatment on the properties of the films was investigated. From X-ray diffraction analysis, the formation of the stable tetragonal β-In2S3 crystal structure was substantiated and revealed that the thermal annealing treatment at 450 °C improved the crystallization of the films. The change in surface topographies and morphologies of the films depending on the post-thermal annealing process were examined by atomic force microscopy and scanning electron microscopy techniques, respectively. The stoichiometric ratio of constituent elements in the films was obtained by elemental analysis and it was seen that the films had slightly sulfur (S) deficit composition. It was found that the concentration of S slightly increased with the thermal annealing process. The room temperature photoluminescence spectra revealed that the films included vacancies of sulfur (VS: donor) and indium (In) (VIn: acceptor), indium interstitial (Ini: donor) and oxygen (O) in vacancy of sulfur (OVs: acceptor) defects with strong and broad emission bands at around 1.70, 2.20, and 2.71 eV.

References

  • [1] Shockley, W., Queisser H.J., “Detailed balance limit of efficiency of p‐n junction solar cells”, Journal of Applied Physics, 32(3): 510-519, (1961).
  • [2] Green, M.A., Dunlop, E.D., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X., “Solar cell efficiency tables (version 59)”, Progress in Photovoltaics: Research and Applications, 30: 3-12, (2022).
  • [3] Wilson, G., Al-Jassim, M.M., Metzger, W., Glunz, S.W., Verlinden, P., Gang, X., Mansfield, L., Stanbery, B.J., Zhu, K., Yan, Y. “The 2020 Photovoltaic Technologies Roadmap”, Journal of Physics D: Applied Physics, 53(49): 493001, (2020).
  • [4] Mufti, N., Amrillah, T., Taufiq, A., Diantoro, M., Nur, H., “Review of CIGS-based solar cells manufacturing by structural engineering”, Solar Energy, 207: 1146-1157, (2020).
  • [5] Sinha, T., Lilhare, D., Khare, A., “A review on the improvement in performance of CdTe/CdS thin-film solar cells through optimization of structural parameters”, Journal of Materials Science, 54(19): 12189-12205, (2019).
  • [6] Prabeesh, P., Sajeesh, V., Selvam, I.P., Bharati, M.D., Rao, G.M., Potty, S., “CZTS solar cell with non-toxic buffer layer: A study on the sulphurization temperature and absorber layer thickness”, Solar Energy, 207: 419-427, (2020).
  • [7] Kowsar, A., Farhad, S.F.U., Rahaman, M., Islam, M.S., Imam, A.Y., Debnath, S.C., Sultana, M., Hoque, M.A., Sharmin, A., Mahmood, Z.H., “Progress in major thin-film solar cells: Growth technologies, layer materials and efficiencies”, International Journal of Renewable Energy Research, 9(2): 579-597, (2019).
  • [8] Kato, T., Wu, J.-L., Hirai, Y., Sugimoto, H., Bermudez, V., “Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu(In, Ga)(Se, S)2”, IEEE Journal of Photovoltaics, 9(1): 325-330, (2018).
  • [9] PV Magazine, First Solar raises bar for CdTe with 21.5% efficiency record, (2015).
  • [10] Yan, C., Huang, J., Sun, K., Johnston, S., Zhang, Y., Sun, H., Pu, A., He, M., Liu, F., Eder, K. “Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment”, Nature Energy, 3(9): 764-772, (2018).
  • [11] Tao, J., Liu, J., Chen, L., Cao, H., Meng, X., Zhang, Y., Zhang, C., Sun, L., Yang, P., Chu, J., “7.1% efficient co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers”, Green Chemistry, 18(2): 550-557, (2016).
  • [12] Kogler, W., Schnabel, T., Ahlswede, E., Taskesen, T., Gütay, L., Hauschild, D., Weinhardt, L., Heske, C., Seeger, J. Hetterich, M., “Hybrid chemical bath deposition-CdS/sputter-Zn(O, S) alternative buffer for Cu2ZnSn(S, Se)4 based solar cells”, Journal of Applied Physics, 127(16): 165301, (2020).
  • [13] Jiang, F., Ozaki, C., Harada, T., Tang, Z., Minemoto, T., Nose, Y., and Ikeda, S., “Effect of indium doping on surface optoelectrical properties of Cu2ZnSnS4 photoabsorber and interfacial/photovoltaic performance of cadmium free In2S3/Cu2ZnSnS4 heterojunction thin film solar cell”, Chemistry of Materials, 28(10): 3283-3291, (2016).
  • [14] Chantana, J., Kato, T., Sugimoto, H., and Minemoto, T., “Heterointerface recombination of Cu(In, Ga)(S, Se)2‐based solar cells with different buffer layers”, Progress in Photovoltaics: Research and Applications, 26(2): 127-134, (2018).
  • [15] Galarza Gutiérrez, U., de Albor Aguilera, M.L., Hernández Vasquez, C., Flores Márquez, J.M., González Trujillo, M.A., Jiménez Olarte, D., Aguilar Hernández, J.R., Remolina Millán, A., “Structural and Optoelectronic Properties of β‐In2S3 Thin Films to be Applied on Cadmium Reduced Solar Cells”, physica status solidi (a), 215(4): 1700428, (2018).
  • [16] Mughal, M.A., Engelken, R., Sharma, R., “Progress in indium (III) sulfide (In2S3) buffer layer deposition techniques for CIS, CIGS, and CdTe-based thin film solar cells”, Solar Energy, 120: 131-146, (2015).
  • [17] Soni, P., Raghuwanshi, M., Wuerz, R., Berghoff, B., Knoch, J., Raabe, D., Cojocaru‐Mirédin, O., “Sputtering as a viable route for In2S3 buffer layer deposition in high efficiency Cu(In, Ga)Se2 solar cells”, Energy Science & Engineering, 7(2): 478-487, (2019).
  • [18] Pistor, P., Merino Álvarez, J.M., León, M., Di Michiel, M., Schorr, S., Klenk, R., Lehmann, S., “Structure reinvestigation of α-, β-and γ-In2S3”, Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 72(3): 410-415, (2016).
  • [19] Rasool, S., Saritha, K.R. Reddy, K., Tivanov, M., Trofimova, A., Tikoto, S., Bychto, L., Patryn, A., Maliński, M., Gremenok, V., “Effect of annealing on the physical properties of thermally evaporated In2S3 thin films”, Current Applied Physics, 19: 108-113, (2019).
  • [20] Stumph, P., Baranova, K., Rogovoy, M., Bunakov, V., Maraeva, E., Tulenin, S., “Chemical bath deposition of In2S3 thin films as promising material and buffer layer for solar cells”, AIP Conference ProceedingsAIP Publishing LLC, 2063(1): 040057, (2019).
  • [21] Souissi, R., Bouguila, N., Bendahan, M., Fiorido, T., Aguir, K., Kraini, M., Vázquez-Vázquez, C., Labidi, A., “Highly sensitive nitrogen dioxide gas sensors based on sprayed β-In2S3 film”, Sensors and Actuators B: Chemical, 319: 128280, (2020).
  • [22] Sterner, J., Malmström, J., Stolt, L., “Study on ALD In2S3/Cu (In, Ga) Se2 interface formation”, Progress in Photovoltaics: Research and Applications, 13(3): 179-193, (2005).
  • [23] Mughal, M.A., Alqudsi, A., Rao, P.M., Masroor, M., Ichwani, R., Zhou, L., Giri, B., “All-electrodeposited p-Cu2ZnSnS4/n-In2S3 Heterojunction Formation for Solar Cell Applications”, 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) IEEE, 142-147, (2018).
  • [24] Karthikeyan, S., Hill, A.E., Pilkington, R.D., “Low temperature pulsed direct current magnetron sputtering technique for single phase β-In2S3 buffer layers for solar cell applications”, Applied Surface Science, 418: 199-206, (2017).
  • [25] Ji, Y., Ou, Y., Yu, Z., Yan, Y., Wang, D., Yan, C., Liu, L., Zhang, Y., Zhao, Y., “Effect of film thickness on physical properties of RF sputtered In2S3 layers”, Surface and Coatings Technology, 276: 587-594, (2015).
  • [26] Spiering, S., Nowitzki, A., Kessler, F., Igalson, M., Maksoud, H.A., “Optimization of buffer-window layer system for CIGS thin film devices with indium sulphide buffer by in-line evaporation”, Solar Energy Mat. Sol. C., 144: 544-550, (2016).
  • [27] Kim, J., Hiroi, H., Todorov, T.K., Gunawan, O., Kuwahara, M., Gokmen, T., Nair, D., Hopstaken, M., Shin, B., Lee, Y.S, “High efficiency Cu2ZnSn (S, Se)4 solar cells by applying a double In2S3/CdS emitter”, Advanced Materials, 26(44): 7427-7431, (2014).
  • [28] Hariskos, D., Spiering, S., Powalla, M., “Buffer layers in Cu (In, Ga) Se2 solar cells and modules”, Thin Solid Films, 480: 99-109, (2005).
  • [29] Abou-Ras, D., Kostorz, G., Hariskos. D., Menner, R., Powalla, M., Schorr, S., Tiwari, A., “Structural and chemical analyses of sputtered InxSy buffer layers in Cu (In, Ga) Se2 thin-film solar cells”, Thin Solid Films, 517(8): 2792-2798, (2009).
  • [30] Hariskos, D., Hempel, W., Menner, R., Witte, W., “Influence of Substrate Temperature during InxSy Sputtering on Cu (In, Ga) Se2/Buffer Interface Properties and Solar Cell Performance”, Applied Sciences, 10(3): 1052, (2020).
  • [31] Wang, S., Shiou, F., Tsao, C., Huang, S., Hsu, C., “An evaluation of the deposition parameters for indium sulfide (In2S3) thin films using the grey-based Taguchi method”, Materials Science in Semiconductor Processing, 16: 1879-1887, (2013).
  • [32] Hwang, D.H., Cho, S., Hui, K.N., Son, Y.G., “Effect of sputtering power on structural and optical properties of radio frequency-sputtered In2S3 thin films”, Journal of Nanoscience and Nanotechnology, 14: 8978-8981, (2014).
  • [33] Siol, S., Dhakal, T.P., Gudavalli, G.S., Rajbhandari, P.P., DeHart, C., Baranowski, L.L., and Zakutayev, A., “Combinatorial reactive sputtering of In2S3 as an alternative contact layer for thin film solar cells”, Acs Applied Materials & Interfaces, 8: 14004-14011, (2016).
  • [34] Soni, P., Raghuwanshi, M., Wuerz, R., Berghoff, B., Knoch, J., Raabe, D., Cojocaru-Mirédin, O., “Role of elemental intermixing at the In2S3/CIGSe heterojunction deposited using reactive RF magnetron sputtering”, Solar Energy Materials & Solar Cells, 195: 367-375, (2019).
  • [35] Gremenok, V.F., Ramakrishna Reddy, K., Tivanov, M.S., Patryn, A., “Effect of annealing on the Structure of thermal evaporated In2S3 thin films”, Przegląd Elektrotechniczny, 93: 89-91, (2017).
  • [36] Sandoval-Paz, M., Sotelo-Lerma, M., Valenzuela-Jauregui, J., Flores-Acosta, M., Ramırez-Bon, R., “Structural and optical studies on thermal-annealed In2S3 films prepared by the chemical bath deposition technique”, Thin Solid Films, 472: 5-10, (2005).
  • [37] Rasool, S., Saritha, K., Reddy, K.R., Bychto, L., Patryn, A., Maliński, M., Tivanov, M., Gremenok, V., “Optoelectronic properties of In2S3 thin films measured using surface photovoltage spectroscopy”, Materials Research Express, 6: 076417, (2019).
  • [38] Timoumi, A., Bouzouita, H., Brini, R., Kanzari, M., Rezig, B., “Optimization of annealing conditions of In2S3 thin films deposited by vacuum thermal evaporation”, Applied Surface Science, 253: 306-310, (2006).
  • [39] Nehra, S., Chander, S., Sharma, A., Dhaka, M., “Effect of thermal annealing on physical properties of vacuum evaporated In2S3 buffer layer for eco-friendly photovoltaic applications”, Materials Science Semiconductor Processing, 40: 26-34, (2015).
  • [40] Rietveld, H.M., “A profile refinement method for nuclear and magnetic structures”, Journal of Applied Crystallography, 2(2): 65-71, (1969).
  • [41] Lutterotti, L., Matthies, S. and Wenk, H.-R., “MAUD (material analysis using diffraction): a user friendly Java program for Rietveld texture analysis and more”, Proceeding of the twelfth international conference on textures of materials, (ICOTOM-12) NRC Research Press Ottowa, Canada, 1: 1599, (1999).
  • [42] Cullity, B.D., Stock, S.R., “Elements of X-Ray Diffraction”, Third Edition, Pearson, U.K., (2014).
  • [43] Tiss, B., Erouel, M., Bouguila, N., Kraini, M., and Khirouni, K., “Effect of silver doping on structural and optical properties of In2S3 thin films fabricated by chemical pyrolysis”, Journal of Alloys and Compounds, 771: 60-66, (2019).
  • [44] Williamson, G., Smallman, R., III. “Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum”, Philosophical Magazine, 1: 34, (1956).
  • [45] Thanikaikarasan, S., “Role of electrolyte concentration on growth kinetics, film thickness, structural, compositional and optical properties of cadmoselite thin films through electrochemical route”, Journal of Alloys and Compounds, 885: 160963, (2021).
  • [46] Mahmood, W., Ali, J., Zahid, I., Thomas, A., ul Haq, A., “Optical and electrical studies of CdS thin films with thickness variation”, Optik, 158: 1558-1566, (2018).
  • [47] Kumar, B.H., Kumar, M.S., “On the conversion of amorphous In2S3 thin films to polycrystalline In2S3 and to In2O3 through thermal oxidation process”, Materials Science in Semiconductor Processing, 111: 104983, (2020).
  • [48] Rao, P., Kumar, S., “Growth of stoichiometric indium sulfide films by thermal evaporation: Influence of vacuum annealing on structural and physical properties”, Thin Solid Films, 524: 93-99, (2012).
  • [49] Assili, K., Selmi, W., Alouani, K., Vilanova, X., “Computational study and characteristics of In2S3 thin films: effects of substrate nature and deposition temperature”, Semiconductor Science and Technology, 34(4): 045006, (2019).
  • [50] Lugo-Loredo, S., Peña-Méndez, Y., Calixto-Rodriguez, M., Messina-Fernández, S., Alvarez-Gallegos, A., Vázquez-Dimas, A. and Hernández-García, T., “Indium sulfide thin films as window layer in chemically deposited solar cells”, Thin Solid Films, 550: 110-113, (2014).
  • [51] Tivanov, M., Svito, I., Rasool, S., Saritha, K., Reddy, K.R., Gremenok, V., “Effect of heat treatment in sulfur on structural, optical and electrical properties of thermally evaporated In2S3 thin films”, Solar Energy, 222: 290-297, (2021).
  • [52] Hashemi, M., Minbashi, M., Ghorashi, S.M.B., Ghobadi, A., “A modeling study on utilizing low temperature sprayed In2S3 as the buffer layer of CuBaSn(S, Se) solar cells”, Scientific Reports, 11(1): 1-11, (2021).
  • [53] Kim, W.T., Kim, C.D., “Optical energy gaps of β‐In2S3 thin films grown by spray pyrolysis”, Journal of Applied Physics, 60(7): 2631-2633, (1986).
  • [54] Ho, C.H., “Growth and characterization of near-band-edge transitions in β-In2S3 single crystals”, Journal of Crystal Growth, 312(19): 2718-2723, (2010).
  • [55] Kraini, M., Bouguila, N., Halidou, I., Moadhen, A., Vázquez-Vázquez, C., López-Quintela, M., Alaya, S., “Study of optical and electrical properties of In2S3: Sn films deposited by spray pyrolysis”, Journal of Electronic Materials, 44(7): 2536-2543, (2015).
  • [56] Ho, C.-H., Lin, M.-H., Wang, Y.-P., Huang, Y.-S., “Synthesis of In2S3 and Ga2S3 crystals for oxygen sensing and UV photodetection”, Sensors and Actuators A: Physical, 245: 119-126, (2016).
  • [57] Jayakrishnan, R., “Photoluminescence in Spray Pyrolysis Deposited β-In2S3 Thin Films”, Journal of Electronic Materials, 47(4): 2249-2256, (2018).
  • [58] Jayakrishnan, R., John, T.T., Kartha, C.S., Vijayakumar, K., Jain, D., Chandra, L.S., Ganesan, V., “Do the grain boundaries of β-In2S3 thin films have a role in sub-band-gap photosensitivity to 632.8 nm?”, Journal of Applied Physics, 103(5): 053106, (2008).
  • [59] Rajeshmon, V., Poornima. N., Kartha, C.S., Vijayakumar, K., “Modification of the optoelectronic properties of sprayed In2S3 thin films by indium diffusion for application as buffer layer in CZTS based solar cell”, Journal of Alloys and Compounds, 553: 239-244, (2013).
  • [60] Jayakrishnan, R., Sebastian, T., Sudha Kartha, C., Vijayakumar, K., “Effect of defect bands in β-In2S3 thin films”, Journal of Applied Physics, 111(9): 093714, (2012).
  • [61] Cao, G., Zhao, Y., Wu, Z., “Synthesis and characterization of In2S3 nanoparticles”, Journal of Alloys and Compounds, 472(1-2): 325-327, (2009).
  • [62] Salem, Y.B., Kilani, M., Kamoun, N., “Effect of deposition runs on the physical properties of In2S3 chemically synthesized for photocatalytic application”, Results in Physics, 10: 706-713, (2018).
  • [63] Souli, M., Bensalem. Y., Secu, M., Bartha, C., Enculescu, M., Mejri, A., Kamoun-Turki, N., Badica, P., “Effect of high gamma radiations on physical properties of In2S3 thin films grown by chemical bath deposition for buffer layer applications”, Results in Physics, 13: 102115, (2019).
There are 63 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

Neslihan Akcay 0000-0002-3948-5629

Berkcan Erenler This is me 0000-0002-8648-5509

Yunus Özen 0000-0002-3101-7644

Valery Gremenok This is me 0000-0002-3442-5299

Konstantin Pavlovich Buskıs This is me 0000-0001-9920-8159

Süleyman Özçelik 0000-0002-3761-3711

Publication Date September 1, 2023
Published in Issue Year 2023 Volume: 36 Issue: 3

Cite

APA Akcay, N., Erenler, B., Özen, Y., Gremenok, V., et al. (2023). Effect of Post-thermal Annealing on the Structural, Morphological, and Optical Properties of RF-sputtered In2S3 Thin Films. Gazi University Journal of Science, 36(3), 1351-1367. https://doi.org/10.35378/gujs.1075405
AMA Akcay N, Erenler B, Özen Y, Gremenok V, Buskıs KP, Özçelik S. Effect of Post-thermal Annealing on the Structural, Morphological, and Optical Properties of RF-sputtered In2S3 Thin Films. Gazi University Journal of Science. September 2023;36(3):1351-1367. doi:10.35378/gujs.1075405
Chicago Akcay, Neslihan, Berkcan Erenler, Yunus Özen, Valery Gremenok, Konstantin Pavlovich Buskıs, and Süleyman Özçelik. “Effect of Post-Thermal Annealing on the Structural, Morphological, and Optical Properties of RF-Sputtered In2S3 Thin Films”. Gazi University Journal of Science 36, no. 3 (September 2023): 1351-67. https://doi.org/10.35378/gujs.1075405.
EndNote Akcay N, Erenler B, Özen Y, Gremenok V, Buskıs KP, Özçelik S (September 1, 2023) Effect of Post-thermal Annealing on the Structural, Morphological, and Optical Properties of RF-sputtered In2S3 Thin Films. Gazi University Journal of Science 36 3 1351–1367.
IEEE N. Akcay, B. Erenler, Y. Özen, V. Gremenok, K. P. Buskıs, and S. Özçelik, “Effect of Post-thermal Annealing on the Structural, Morphological, and Optical Properties of RF-sputtered In2S3 Thin Films”, Gazi University Journal of Science, vol. 36, no. 3, pp. 1351–1367, 2023, doi: 10.35378/gujs.1075405.
ISNAD Akcay, Neslihan et al. “Effect of Post-Thermal Annealing on the Structural, Morphological, and Optical Properties of RF-Sputtered In2S3 Thin Films”. Gazi University Journal of Science 36/3 (September 2023), 1351-1367. https://doi.org/10.35378/gujs.1075405.
JAMA Akcay N, Erenler B, Özen Y, Gremenok V, Buskıs KP, Özçelik S. Effect of Post-thermal Annealing on the Structural, Morphological, and Optical Properties of RF-sputtered In2S3 Thin Films. Gazi University Journal of Science. 2023;36:1351–1367.
MLA Akcay, Neslihan et al. “Effect of Post-Thermal Annealing on the Structural, Morphological, and Optical Properties of RF-Sputtered In2S3 Thin Films”. Gazi University Journal of Science, vol. 36, no. 3, 2023, pp. 1351-67, doi:10.35378/gujs.1075405.
Vancouver Akcay N, Erenler B, Özen Y, Gremenok V, Buskıs KP, Özçelik S. Effect of Post-thermal Annealing on the Structural, Morphological, and Optical Properties of RF-sputtered In2S3 Thin Films. Gazi University Journal of Science. 2023;36(3):1351-67.