Fabrication and Performance of a Perovskite Solar Cell: Effect of Acetylacetone on Compact TiO2 Layer
Year 2024,
Volume: 37 Issue: 1, 54 - 62, 01.03.2024
Büşra Kaya
,
İsmail Boz
,
Mehtap Şafak Boroğlu
Abstract
Solar energy has been the most emphasized issue in recent years, as it is sustainable and causes zero emissions. In the solar cell industry, new manufacturing protocols have led to the development of materials with enhanced properties. Over the past decades, perovskite solar cells (PSC) have obtained a power conversion efficiency (PCE) to be 25% due to the development of synthesis techniques, electrode materials, etc. There is an important relationship between the thickness of the transport layers (hole and electron) in the case of improving the yield of perovskite solar cells. We have investigated the influence of the acid-assisted and acetylacetone-assisted (AA) methods on TiO2 films and thus the effect on the PCE of perovskite solar cells. Perovskite (CH3NH3PbI3) layer and different compact TiO2 (c-TiO2) layers have been coated by the spin coating method, and the overall experimental section is made in the nitrogen medium at room temperature. Through an acid-assisted method, the cracked c-TiO2 film was formed. The planar solar cell structure of ITO/AA-TiO2/CH3NH3PbI3/P3HT/Ag resulted in 0.03% of PCE. However, the perovskite solar cells with a mesoporous solar cell structure of ITO/ AA-TiO2/m- TiO2 /CH3NH3PbI3/P3HT/Ag resulted in 0.1% of PCE.
Supporting Institution
İstanbul Üniversitesi-Cerrahpaşa BAP
Thanks
This work was supported by the Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa. Project number: 24492.
References
- [1] Ibn-Mohammed, T., Koh, S. C. L., Reaney, I. M., Acquaye, A., Schileo, G., Mustapha, K. B., and Greenough, R., “Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies”, Renewable and Sustainable Energy Reviews, 80: 1321–1344, (2017).
- [2] Pitchaiya, S., Natarajan, M., Santhanam, A., Asokan, V., Ramakrishnan, V. M., Selvaraj, Y., and Velauthapillai, D., “The Performance of CH3NH3PbI3 - Nanoparticles based – Perovskite Solar Cells Fabricated by Facile Powder press Technique,” Materials Research Bulletin, 108: 61–72, (2018).
- [3] Ojanperä, A. M. M. “Mesoscopic Perovskite Solar Cells: Efficiency Enhancement via Optimization of the Titania Anode”, Master's thesis, Tampere University of Technology, Finland, 54, (2015).
- [4] Yu. Y., Gao P., “Development of electron and hole selective contact materials for perovskite solar cells”, Chinese Chemical Letters, 28: 1144–1152, (2017).
- [5] Deng, X., Wilkes, G. C., Chen, A. Z., Prasad, N. S., Gupta, M. C., and Choi, J. J., “Room-temperature processing of TiOx electron transporting layer for perovskite solar cells”, The Journal of Physical Chemistry Letters, 8: 3206-3210, (2017).
- [6] Ahmad, S., Abbas, H., Khan, M. B., Nagal, V., Hafiz, A. K., and Khan, Z. H., “ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere”, Solar Energy, 216: 164–170, (2021).
- [7] Cheng, N., Yu, Z., Li, W., Liu, Z., Lei, B., Zi, W., and Rodríguez-Gallegos, C. D., “Highly efficient perovskite solar cells employing SnO2 electron transporting layer derived from a tin oxalate precursor solution”, Journal of Power Sources, 544, (2022).
- [8] Niu, B., Wang, X., Wu, K., He, X., and Zhang, R., “Mesoporous titanium dioxide: Synthesis and applications in photocatalysis, energy and biology”, Materials, 11: 1910, (2018).
- [9] Hong S., Han A., Lee E.C., K.W., Ko J.H. Park, Song H.J., Han M.H., Han C.H., “A facile and low-cost fabrication of TiO2 compact layer for efficient perovskite solar cells”, Current Applied Physics, 15: 574–579, (2015).
- [10] Wang X., Fang Y., He L., Wang Q., Wu T., “Influence of compact TiO2 layer on the photovoltaic characteristics of the organometal halide perovskite-based solar cells”, Materials Science Semiconductor Processing, 27: 569–576, (2014).
- [11] Nyongesa F., “Electrophoretic Deposition of Titanium Dioxide Thin Films for Photocatalytic Water Purification Systems”, Advances in Materials, 6: 31-37, (2017).
- [12] Spiridonova, J., Katerski, A., Danilson, M., Krichevskaya, M., Krunks, M., and Oja A., “Effect of the Titanium Isopropoxide: Acetylacetone Molar Ratio on the Photocatalytic Activity of TiO2 Thin Films”, Molecules, 24: 4326, (2019).
- [13] Asad, J., Shaat, S. K. K., Musleh, H., Shurrab, N., Issa, A., Lahmar, A., Al Dahoudi, N., “Perovskite solar cells free of hole transport layer”, Journal of Sol-Gel Science and Technology, 90: 443–449, (2019).
- [14] Homola, T., Pospisil, J., Shekargoftar, M., Svoboda, T., Hvojnik, M., Gemeiner, P., Dzik, P., “Perovskite Solar Cells with Low-Cost TiO2 Mesoporous Photoanodes Prepared by Rapid Low-Temperature (70 °C) Plasma Processing”, Applied Energy Materials, 3: 12009–12018, (2020).
- [15] Jourdani, R., Outzourhit, A., Oueriagli, A., Aitelhabti, D., Ameziane, E. L., Barazzouk, S., & Hotchandani, S., “Structural, optical and electrochromic properties of nanocrystalline TiO2 thin films prepared by spin coating”, Active and Passive Electronic Components, 27: 125–131, (2004).
- [16] Li, S., Yang, B., Wu, R., Zhang, C., Zhang, C., Tang, X. F., and Yang, J., “High-quality CH3NH3PbI3 thin film fabricated via intramolecular exchange for efficient planar heterojunction perovskite solar cells”, Organic Electronics, 39: 304–310, (2016).
- [17] Sharma, A., Chaure, N. B., “Studies on CH3NH3PbI3 prepared by low-cost wet chemical technique”, Applied Physics A, 25: 1-7, (2019).
- [18] Runa A., Feng S., Wen G., Feng F., Wang J., Liu L., Su P., Yang H., Fu W., “Highly reproducible perovskite solar cells based on solution coating from mixed solvents”, Journal of Material Science, 53: 3590–3602, (2018).
- [19] Habibi M., Zabihi F., Ahmadian-Yazdi M.R., Eslamian M., “Progress in emerging solution-processed thin film solar cells - Part II: Perovskite solar cells”, Renewable and Sustainable Energy Reviews, 62: 1012–1031, (2015).
- [20] Sakib S., Mohd Noor M.Y., Salim M.R., Abdullah A.S., Azmi A.I., M.H., Ibrahim M.H., “Effect of transport layer thickness in lead-based perovskite solar cell: A numerical simulation”, Materials Today Processing, (2022).
- [21] Kim W., Shinde D. V., Park T., “Thickness of the hole transport layer in perovskite solar cells: Performance versus reproducibility”, Royal Society Chemistry Advances, 5: 99356–99360, (2015).
Year 2024,
Volume: 37 Issue: 1, 54 - 62, 01.03.2024
Büşra Kaya
,
İsmail Boz
,
Mehtap Şafak Boroğlu
References
- [1] Ibn-Mohammed, T., Koh, S. C. L., Reaney, I. M., Acquaye, A., Schileo, G., Mustapha, K. B., and Greenough, R., “Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies”, Renewable and Sustainable Energy Reviews, 80: 1321–1344, (2017).
- [2] Pitchaiya, S., Natarajan, M., Santhanam, A., Asokan, V., Ramakrishnan, V. M., Selvaraj, Y., and Velauthapillai, D., “The Performance of CH3NH3PbI3 - Nanoparticles based – Perovskite Solar Cells Fabricated by Facile Powder press Technique,” Materials Research Bulletin, 108: 61–72, (2018).
- [3] Ojanperä, A. M. M. “Mesoscopic Perovskite Solar Cells: Efficiency Enhancement via Optimization of the Titania Anode”, Master's thesis, Tampere University of Technology, Finland, 54, (2015).
- [4] Yu. Y., Gao P., “Development of electron and hole selective contact materials for perovskite solar cells”, Chinese Chemical Letters, 28: 1144–1152, (2017).
- [5] Deng, X., Wilkes, G. C., Chen, A. Z., Prasad, N. S., Gupta, M. C., and Choi, J. J., “Room-temperature processing of TiOx electron transporting layer for perovskite solar cells”, The Journal of Physical Chemistry Letters, 8: 3206-3210, (2017).
- [6] Ahmad, S., Abbas, H., Khan, M. B., Nagal, V., Hafiz, A. K., and Khan, Z. H., “ZnO for stable and efficient perovskite bulk heterojunction solar cell fabricated under ambient atmosphere”, Solar Energy, 216: 164–170, (2021).
- [7] Cheng, N., Yu, Z., Li, W., Liu, Z., Lei, B., Zi, W., and Rodríguez-Gallegos, C. D., “Highly efficient perovskite solar cells employing SnO2 electron transporting layer derived from a tin oxalate precursor solution”, Journal of Power Sources, 544, (2022).
- [8] Niu, B., Wang, X., Wu, K., He, X., and Zhang, R., “Mesoporous titanium dioxide: Synthesis and applications in photocatalysis, energy and biology”, Materials, 11: 1910, (2018).
- [9] Hong S., Han A., Lee E.C., K.W., Ko J.H. Park, Song H.J., Han M.H., Han C.H., “A facile and low-cost fabrication of TiO2 compact layer for efficient perovskite solar cells”, Current Applied Physics, 15: 574–579, (2015).
- [10] Wang X., Fang Y., He L., Wang Q., Wu T., “Influence of compact TiO2 layer on the photovoltaic characteristics of the organometal halide perovskite-based solar cells”, Materials Science Semiconductor Processing, 27: 569–576, (2014).
- [11] Nyongesa F., “Electrophoretic Deposition of Titanium Dioxide Thin Films for Photocatalytic Water Purification Systems”, Advances in Materials, 6: 31-37, (2017).
- [12] Spiridonova, J., Katerski, A., Danilson, M., Krichevskaya, M., Krunks, M., and Oja A., “Effect of the Titanium Isopropoxide: Acetylacetone Molar Ratio on the Photocatalytic Activity of TiO2 Thin Films”, Molecules, 24: 4326, (2019).
- [13] Asad, J., Shaat, S. K. K., Musleh, H., Shurrab, N., Issa, A., Lahmar, A., Al Dahoudi, N., “Perovskite solar cells free of hole transport layer”, Journal of Sol-Gel Science and Technology, 90: 443–449, (2019).
- [14] Homola, T., Pospisil, J., Shekargoftar, M., Svoboda, T., Hvojnik, M., Gemeiner, P., Dzik, P., “Perovskite Solar Cells with Low-Cost TiO2 Mesoporous Photoanodes Prepared by Rapid Low-Temperature (70 °C) Plasma Processing”, Applied Energy Materials, 3: 12009–12018, (2020).
- [15] Jourdani, R., Outzourhit, A., Oueriagli, A., Aitelhabti, D., Ameziane, E. L., Barazzouk, S., & Hotchandani, S., “Structural, optical and electrochromic properties of nanocrystalline TiO2 thin films prepared by spin coating”, Active and Passive Electronic Components, 27: 125–131, (2004).
- [16] Li, S., Yang, B., Wu, R., Zhang, C., Zhang, C., Tang, X. F., and Yang, J., “High-quality CH3NH3PbI3 thin film fabricated via intramolecular exchange for efficient planar heterojunction perovskite solar cells”, Organic Electronics, 39: 304–310, (2016).
- [17] Sharma, A., Chaure, N. B., “Studies on CH3NH3PbI3 prepared by low-cost wet chemical technique”, Applied Physics A, 25: 1-7, (2019).
- [18] Runa A., Feng S., Wen G., Feng F., Wang J., Liu L., Su P., Yang H., Fu W., “Highly reproducible perovskite solar cells based on solution coating from mixed solvents”, Journal of Material Science, 53: 3590–3602, (2018).
- [19] Habibi M., Zabihi F., Ahmadian-Yazdi M.R., Eslamian M., “Progress in emerging solution-processed thin film solar cells - Part II: Perovskite solar cells”, Renewable and Sustainable Energy Reviews, 62: 1012–1031, (2015).
- [20] Sakib S., Mohd Noor M.Y., Salim M.R., Abdullah A.S., Azmi A.I., M.H., Ibrahim M.H., “Effect of transport layer thickness in lead-based perovskite solar cell: A numerical simulation”, Materials Today Processing, (2022).
- [21] Kim W., Shinde D. V., Park T., “Thickness of the hole transport layer in perovskite solar cells: Performance versus reproducibility”, Royal Society Chemistry Advances, 5: 99356–99360, (2015).