Research Article
BibTex RIS Cite
Year 2024, Volume: 37 Issue: 1, 150 - 167, 01.03.2024
https://doi.org/10.35378/gujs.1182561

Abstract

References

  • [1] Hayran, A., “Content-based search in gene expression databases”, Master's Thesis, Baskent University Institute of Science and Engineering, Ankara, 1-10, (2014).
  • [2] Atis, S., “Microarray analysis of gene expression data in breast cancer”, Master's Thesis, Uludağ University Institute of Health Sciences, Bursa, 1-11, (2014).
  • [3] Lian, Y.F., Huang, Y.L., Wang, J.L., Deng, M.H., Xia, T.L., Zeng, M.S., Chen, M.S., Wang, H.B., and Huang, Y.H., “Anillin is required for tumor growth and regulated by miR‐15a/miR‐16‐1 in HBV‐related hepatocellular carcinoma”, Aging, 10(8): 1884-1901, (2018).
  • [4] Satow, R., Shitashige, M., Kanai, Y., Takeshita, F., Ojima, H., Jigami, T., Honda, K., Kosuge, T., Ochiya, T., Hirohashi, S., and Yamada, T., “Combined functional genome survey of therapeutic targets for hepatocellular carcinoma”, Clinical Cancer Research, 16(9): 2518-2528, (2010).
  • [5] Wong, N., Yeo, W., Wong, W.L., Wong, N.L.Y., Chan, K.Y.Y., Mo, F.K.F., Koh, J., Chan, S.L., Chan, A.T.C., Lai, P.B.S., Ching, A.K.K., Tong, J.H.M., Ng, H.K., Johnson, P.J., and To, K.F., “TOP2A overexpression in hepatocellular carcinoma correlates with early age onset shorter patients survival and chemoresistance”, International Journal of Cancer, 124: 644–652, (2009).
  • [6] Gao, X., Wang, X., and Zhang, S., “Bioinformatics identification of crucial genes and pathways associated with hepatocellular carcinoma”, Bioscience Reports, 38(6): 1-8, (2018).
  • [7] Horvath, S., Zhang, B., Carlson, M., Lu, K.V., Zhu, S., Felciano, R.M., Laurance, M.F., Zhao, W., Qi, S., Chen, Z., Lee, Y., Scheck, A.C., Liau, L.M., Wu, H., Geschwind, D.H., Febbo, P.G., Kornblum, H.I., Cloughesy, T.F., Nelson, S.F., and Mischel, P.S., “Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target”, Pnas, 103(46): 17402-17407, (2006).
  • [8] Li, F., Liu, T., Xiao, C.Y., Yu, J.X., Lu, L.G., and Xu, M.Y., “FOXP1 and SPINK1 reflect the risk of cirrhosis progression to HCC with HBV infection”, Biomedicine & Pharmacotherapy, 72: 103-108, (2015).
  • [9] Marshall, A., Lukk, M., Kutter, C., Davies, S., Alexander, G., and Odom, D.T, “Global gene expression profiling reveals SPINK1 as a potential hepatocellular carcinoma marker”, Plos One, 8(3): e59459, (2013).
  • [10] Wang, W., Huang, P., Zhang, L., Wei, J., Xie, Q., Sun, Q., Zhou, X., Xie, H., Zhou, L., and Zheng, S., “Antitumor efficacy of C-X-C motif chemokine ligand 14 in hepatocellular carcinoma in vitro and in vivo”, Cancer Science, 104(11): 1523-1531, (2013).
  • [11] Esposti, D.D., Vargas, H.H., Voegele, C., Jimenez, N.F., Forey, N., Bancel, B., Calvez-Kelm, F.L., McKay, J., Merle, P., and Herceg, Z., “Identification of novel long non-coding RNAs deregulated in hepatocellular carcinoma using RNA-sequencing”, Oncotarget, 7(22): 31862- 31877, (2016).
  • [12] Jovel, J., Lin, Z., O’keefe, S., Willows, S., Wang, W., Zhang, G., Patterson, J., Moctezuma-Velazquez, C., Kelvin, D.J., Wong, G.K.S., and Mason, A.L., “A survey of molecular heterogeneity in hepatocellular carcinoma”, Hepatology Communications, 2(8): 945-959, (2018).
  • [13] Dai, M., Chen, S., Wei, X., Zhu, X., Lan, F., Dai, S., and Qin, X., “Diagnosis prognosis and bioinformat ics analysis of lncRNAs in hepatocellular carcinoma”, Oncotarget, 8(56): 95799-95809, (2017).
  • [14] Agarwal, R., Narayan, J., Bhattacharyya, A., Saraswat, M., and Tomar, A.K., “Gene expression profiling, pathway analysis and subtype classification reveal molecular heterogeneity in hepatocellular carcinoma and suggest subtype specific therapeutic targets”, Cancer Genetic, 216-217: 37-51, (2017).
  • [15] Ho, D.W.H., Kai, A.K.L., and Ng, I.O.L., “TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma”, Frontiers of Medicine, 9(3): 322-330, (2015).
  • [16] Chen, J., Qian, Z., Li, F., Li, J., and Lu., Y., “Integrative analysis of microarray data to reveal regulation patterns in the pathogenesis of hepatocellular carcinoma”, Gut and Liver, 11(1): 112-120, (2017).
  • [17] Huang, Y.Y., Gusdon, A.M., and Qu, S., “Cross-talk between the thyroid and liver: A new target for nonalcoholic fatty liver disease treatment”, World Journal of Gastroenterology, 19(45): 8238- 8246, (2013).
  • [18] Cheng, P., Cheng, Y., Su, M.X., Li, D., Zhao, G.Z., Gao, H., Li, Y., Zhu, J.Y., Li, H., and Zhang, T., “Bicluster and pathway enrichment analysis of HCV-induced cirrhosis and hepatocellular carcinoma”, Asian Pacific Journal of Cancer Prevention, 13: 3741-3745, (2012).
  • [19] Re, L.O., Douet, J., Buschbeck, M., Fusilli, C., Pazienza, V., Panebianco, C., Castracani, C.C., Mazza, T., Volti, G.L., and Vinciguerra, M., “Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells”, Epigenetics, 13(8): 829-845, (2018).
  • [20] Chang, Q., Chen, J., Beezhold, K.J., Castranova, V., Shi, X., and Chen, F., “JNK1 activation predicts the prognostic outcome of the human hepatocellular carcinoma”, Molecular Cancer, 8(64): 1-14, (2009).
  • [21] Udhaya Kumar, S., Thirumal Kumar, D., Siva, R., George Priya Doss, C. and Zayed, H., “Integrative bioinformatics approaches to map potential novel genes and pathways involved in ovarian cancer”, Frontiers in Bioengineering and Biotechnology, 7(391): (2019).
  • [22] Wan, J., Jiang S., Jiang, Y., Ma, W., Wang, X. and Cui, R., “Data mining and expression analysis of differential lncRNA ADAMTS9-AS1 in prostate cancer”, Frontiers in Genetics, 10(1377): (2020).
  • [23] Udhaya Kumar, S., Thirumal Kumar, D., Siva, R., George Priya Doss, C., Younes, S., Younes, N., Sidenna, M. and Zayed, H., “Dysregulation of signaling pathways due to differentially expressed genes from the b-cell transcriptomes of systemic lupus erythematosus patients - A bioinformatics approach”, Frontiers in Bioengineering and Biotechnology, 8(276): (2020).
  • [24] Fu, D., Zhang, B., Yang, L., Huang, S. and Xin, W., “Development of an immune-related risk signature for predicting prognosis in lung squamous cell carcinoma”, Frontiers in Genetics, 11(978): (2020).
  • [25] https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi. Access date: 19.11.2018
  • [26] Alexa, A., Rahnenführer, J. and Lengauer, T., “Improved scoring of functional groups from gene expression data by decorrelating GO graph structure”, Bioinformatics, 22(13): 1600-1607, (2006).
  • [27] https://string-db.org Access date: 27.11.2019
  • [28] Citak, F.E., Citak, E.C. and Karadeniz, C., “Chemokines and diseases”, Turkiye Klinikleri Journal of Medical Sciences, 22(2): 210-216, (2002).
  • [29] Strieter, R.M., Burdick, M.D., Mestas, J., Gomperts, B., Keane, M.P., and Belperio, J.A., “Cancer CXC chemokine networks and tumour angiogenesis”, European Journal of Cancer, 42(6): 768-778, (2006).
  • [30] Xu, Z.G., Du, J.J., Zhang, X., Cheng, Z.H., Ma, Z.Z., Xiao, H.S., Yu, L., Wang, Z.Q., Li, Y.Y., Huo, K.K., and Han, Z.G., “A novel liver-specific zona pelluc ida domain containing protein that is expressed rarely in hepatocellular carcinoma”, Hepatology, 38(3): 735-744, (2003).
  • [31] Huang, Y.W., and Meng, X.J., “Identification of a porcine DC-SIGN-related C-type lectin, porcine CLEC4G (LSECtin), and its order of intron removal during splicing: Comparative genomic analyses of the cluster of genes CD23/CLEC4G/DC-SIGN among mammalian species”, Developmental and Comparative Immunology, 33(6): 747-760, (2009).
  • [32] Kuemmerle, N.B., and Kinlaw, W.B., “THRSP (thyroid hormone responsive)”, Atlas of Genetics and Cytogenetics in Oncology and Haematology, 15(6): 480-482, (2011).
  • [33] Morton, R.E., Gnizak, H.M., Greene, D.J., Cho, K.H., and Paromov, V.M., “Lipid transfer inhibitor protein (apolipoprotein F) concentration in normolipidemic and hyperlipidemic subjects”, Journal of Lipid Research, 49: 127-135, (2008).
  • [34] Yu, S.J., Kim, H., Min, H., Sohn, A., Cho, Y.Y., Yoo, J.J., Lee, D.H., Cho, E.J., Lee, J.H., Gim, J., Park, T., Kim, Y.J., Kim, C.Y., Yoon, J.H., and Kim, Y., “Targeted proteomics predicts a sustained complete-response after transarterial chemoembolization and clinical outcomes in patients with hepatocellular carcinoma: a prospective cohort study”, Journal of Proteome Research, 16(3): 1239-1248, (2017).
  • [35] Yue, C., Ren, Y., Ge, H., Liang, C., Xu, Y., Li, G. and Wu, J., “Comprehensive analysis of potential prognostic genes for the construction of a competing endogenous RNA regulatory network in hepatocellular carcinoma”, OncoTargets and Therapy, 12: 561-576, (2019).
  • [36] Jiang, C.H., Yuan, X., Li, J.F., Xie, Y.F., Zhang, A.Z., Wang, X.L., Yang, L., Liu, C.X., Liang, W.H., Pang, L.J., Zou, H., Cui, X.B., Shen, X.H., Qi, Y., Jiang, J.F., Gu, W.Y., Li, F. and Hu, J.M., “Bioinformatics-based screening of key genes for transformation of liver cirrhosis to hepatocellular carcinoma”, Journal of Translational Medicine, 18(40): (2020).
  • [37] Chen, Q.F., Xia, J.G., Li, W., Shen, L.J., Huang, T. and Wu, P., “Examining the key genes and pathways in hepatocellular carcinoma development from hepatitis B virus‑positive cirrhosis”, Molecular Medicine Reports, 18(6): 4940-4950, (2018).
  • [38] He, B., Yin, J., Gong, S., Gu, J., Xiao, J., Shi, W., Ding, W. and He, Y., “Bioinformatics analysis of key genes and pathways for hepatocellular carcinoma transformed from cirrhosis”, Medicine, 96(25): (2017).

Investigation of Genes and Their Interactions in Liver Diseases Using Bioinformatics Algorithms

Year 2024, Volume: 37 Issue: 1, 150 - 167, 01.03.2024
https://doi.org/10.35378/gujs.1182561

Abstract

In this study, we considered progression of liver diseases. Particularly we considered Hepatocellular Carcinoma Cancer, HCC, whose patients have low survival rates. For this purpose, we researched molecular structures and protein interactions involved in the initiation and progression of HCC. We exploited microarray data samples and their gene expression profiles from literature. During analysis, we implemented statistical data analysis techniques and looked for Differentially Expressed Genes during the initiation and progression of HCC. As a result of this analysis we found 12 hub genes, where 3 of them (ANLN, TOP2A, ASPM and SPINK1) were upregulated and the others (CXCL14, LINC01093, OIT3, CLEC4G, THRSP, APOF, CLTRN and FCN3) were downregulated. By performing Gene Ontology Analysis, we classified genes with increased or decreased expressions in terms of cellular component, biological process, and molecular function. Subsequently, we executed protein-protein interaction network analysis and found important interactions between the hub genes. Results of data analysis concluded that these 12 genes and their interactions play a key role in the initiation and progression of significant liver diseases and can be used as a potential biomarker for disease progression. Furthermore, gene feature analysis showed that it is becoming more difficult to compensate functional deficiencies of the proteins encoded by these genes during biological processes. In particular, Gene Ontology Analysis denoted that TOP2A gene associates with many of the biological pathways and a change in the expression of this gene can cause decent problems in many cellular functions.

References

  • [1] Hayran, A., “Content-based search in gene expression databases”, Master's Thesis, Baskent University Institute of Science and Engineering, Ankara, 1-10, (2014).
  • [2] Atis, S., “Microarray analysis of gene expression data in breast cancer”, Master's Thesis, Uludağ University Institute of Health Sciences, Bursa, 1-11, (2014).
  • [3] Lian, Y.F., Huang, Y.L., Wang, J.L., Deng, M.H., Xia, T.L., Zeng, M.S., Chen, M.S., Wang, H.B., and Huang, Y.H., “Anillin is required for tumor growth and regulated by miR‐15a/miR‐16‐1 in HBV‐related hepatocellular carcinoma”, Aging, 10(8): 1884-1901, (2018).
  • [4] Satow, R., Shitashige, M., Kanai, Y., Takeshita, F., Ojima, H., Jigami, T., Honda, K., Kosuge, T., Ochiya, T., Hirohashi, S., and Yamada, T., “Combined functional genome survey of therapeutic targets for hepatocellular carcinoma”, Clinical Cancer Research, 16(9): 2518-2528, (2010).
  • [5] Wong, N., Yeo, W., Wong, W.L., Wong, N.L.Y., Chan, K.Y.Y., Mo, F.K.F., Koh, J., Chan, S.L., Chan, A.T.C., Lai, P.B.S., Ching, A.K.K., Tong, J.H.M., Ng, H.K., Johnson, P.J., and To, K.F., “TOP2A overexpression in hepatocellular carcinoma correlates with early age onset shorter patients survival and chemoresistance”, International Journal of Cancer, 124: 644–652, (2009).
  • [6] Gao, X., Wang, X., and Zhang, S., “Bioinformatics identification of crucial genes and pathways associated with hepatocellular carcinoma”, Bioscience Reports, 38(6): 1-8, (2018).
  • [7] Horvath, S., Zhang, B., Carlson, M., Lu, K.V., Zhu, S., Felciano, R.M., Laurance, M.F., Zhao, W., Qi, S., Chen, Z., Lee, Y., Scheck, A.C., Liau, L.M., Wu, H., Geschwind, D.H., Febbo, P.G., Kornblum, H.I., Cloughesy, T.F., Nelson, S.F., and Mischel, P.S., “Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target”, Pnas, 103(46): 17402-17407, (2006).
  • [8] Li, F., Liu, T., Xiao, C.Y., Yu, J.X., Lu, L.G., and Xu, M.Y., “FOXP1 and SPINK1 reflect the risk of cirrhosis progression to HCC with HBV infection”, Biomedicine & Pharmacotherapy, 72: 103-108, (2015).
  • [9] Marshall, A., Lukk, M., Kutter, C., Davies, S., Alexander, G., and Odom, D.T, “Global gene expression profiling reveals SPINK1 as a potential hepatocellular carcinoma marker”, Plos One, 8(3): e59459, (2013).
  • [10] Wang, W., Huang, P., Zhang, L., Wei, J., Xie, Q., Sun, Q., Zhou, X., Xie, H., Zhou, L., and Zheng, S., “Antitumor efficacy of C-X-C motif chemokine ligand 14 in hepatocellular carcinoma in vitro and in vivo”, Cancer Science, 104(11): 1523-1531, (2013).
  • [11] Esposti, D.D., Vargas, H.H., Voegele, C., Jimenez, N.F., Forey, N., Bancel, B., Calvez-Kelm, F.L., McKay, J., Merle, P., and Herceg, Z., “Identification of novel long non-coding RNAs deregulated in hepatocellular carcinoma using RNA-sequencing”, Oncotarget, 7(22): 31862- 31877, (2016).
  • [12] Jovel, J., Lin, Z., O’keefe, S., Willows, S., Wang, W., Zhang, G., Patterson, J., Moctezuma-Velazquez, C., Kelvin, D.J., Wong, G.K.S., and Mason, A.L., “A survey of molecular heterogeneity in hepatocellular carcinoma”, Hepatology Communications, 2(8): 945-959, (2018).
  • [13] Dai, M., Chen, S., Wei, X., Zhu, X., Lan, F., Dai, S., and Qin, X., “Diagnosis prognosis and bioinformat ics analysis of lncRNAs in hepatocellular carcinoma”, Oncotarget, 8(56): 95799-95809, (2017).
  • [14] Agarwal, R., Narayan, J., Bhattacharyya, A., Saraswat, M., and Tomar, A.K., “Gene expression profiling, pathway analysis and subtype classification reveal molecular heterogeneity in hepatocellular carcinoma and suggest subtype specific therapeutic targets”, Cancer Genetic, 216-217: 37-51, (2017).
  • [15] Ho, D.W.H., Kai, A.K.L., and Ng, I.O.L., “TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma”, Frontiers of Medicine, 9(3): 322-330, (2015).
  • [16] Chen, J., Qian, Z., Li, F., Li, J., and Lu., Y., “Integrative analysis of microarray data to reveal regulation patterns in the pathogenesis of hepatocellular carcinoma”, Gut and Liver, 11(1): 112-120, (2017).
  • [17] Huang, Y.Y., Gusdon, A.M., and Qu, S., “Cross-talk between the thyroid and liver: A new target for nonalcoholic fatty liver disease treatment”, World Journal of Gastroenterology, 19(45): 8238- 8246, (2013).
  • [18] Cheng, P., Cheng, Y., Su, M.X., Li, D., Zhao, G.Z., Gao, H., Li, Y., Zhu, J.Y., Li, H., and Zhang, T., “Bicluster and pathway enrichment analysis of HCV-induced cirrhosis and hepatocellular carcinoma”, Asian Pacific Journal of Cancer Prevention, 13: 3741-3745, (2012).
  • [19] Re, L.O., Douet, J., Buschbeck, M., Fusilli, C., Pazienza, V., Panebianco, C., Castracani, C.C., Mazza, T., Volti, G.L., and Vinciguerra, M., “Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells”, Epigenetics, 13(8): 829-845, (2018).
  • [20] Chang, Q., Chen, J., Beezhold, K.J., Castranova, V., Shi, X., and Chen, F., “JNK1 activation predicts the prognostic outcome of the human hepatocellular carcinoma”, Molecular Cancer, 8(64): 1-14, (2009).
  • [21] Udhaya Kumar, S., Thirumal Kumar, D., Siva, R., George Priya Doss, C. and Zayed, H., “Integrative bioinformatics approaches to map potential novel genes and pathways involved in ovarian cancer”, Frontiers in Bioengineering and Biotechnology, 7(391): (2019).
  • [22] Wan, J., Jiang S., Jiang, Y., Ma, W., Wang, X. and Cui, R., “Data mining and expression analysis of differential lncRNA ADAMTS9-AS1 in prostate cancer”, Frontiers in Genetics, 10(1377): (2020).
  • [23] Udhaya Kumar, S., Thirumal Kumar, D., Siva, R., George Priya Doss, C., Younes, S., Younes, N., Sidenna, M. and Zayed, H., “Dysregulation of signaling pathways due to differentially expressed genes from the b-cell transcriptomes of systemic lupus erythematosus patients - A bioinformatics approach”, Frontiers in Bioengineering and Biotechnology, 8(276): (2020).
  • [24] Fu, D., Zhang, B., Yang, L., Huang, S. and Xin, W., “Development of an immune-related risk signature for predicting prognosis in lung squamous cell carcinoma”, Frontiers in Genetics, 11(978): (2020).
  • [25] https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi. Access date: 19.11.2018
  • [26] Alexa, A., Rahnenführer, J. and Lengauer, T., “Improved scoring of functional groups from gene expression data by decorrelating GO graph structure”, Bioinformatics, 22(13): 1600-1607, (2006).
  • [27] https://string-db.org Access date: 27.11.2019
  • [28] Citak, F.E., Citak, E.C. and Karadeniz, C., “Chemokines and diseases”, Turkiye Klinikleri Journal of Medical Sciences, 22(2): 210-216, (2002).
  • [29] Strieter, R.M., Burdick, M.D., Mestas, J., Gomperts, B., Keane, M.P., and Belperio, J.A., “Cancer CXC chemokine networks and tumour angiogenesis”, European Journal of Cancer, 42(6): 768-778, (2006).
  • [30] Xu, Z.G., Du, J.J., Zhang, X., Cheng, Z.H., Ma, Z.Z., Xiao, H.S., Yu, L., Wang, Z.Q., Li, Y.Y., Huo, K.K., and Han, Z.G., “A novel liver-specific zona pelluc ida domain containing protein that is expressed rarely in hepatocellular carcinoma”, Hepatology, 38(3): 735-744, (2003).
  • [31] Huang, Y.W., and Meng, X.J., “Identification of a porcine DC-SIGN-related C-type lectin, porcine CLEC4G (LSECtin), and its order of intron removal during splicing: Comparative genomic analyses of the cluster of genes CD23/CLEC4G/DC-SIGN among mammalian species”, Developmental and Comparative Immunology, 33(6): 747-760, (2009).
  • [32] Kuemmerle, N.B., and Kinlaw, W.B., “THRSP (thyroid hormone responsive)”, Atlas of Genetics and Cytogenetics in Oncology and Haematology, 15(6): 480-482, (2011).
  • [33] Morton, R.E., Gnizak, H.M., Greene, D.J., Cho, K.H., and Paromov, V.M., “Lipid transfer inhibitor protein (apolipoprotein F) concentration in normolipidemic and hyperlipidemic subjects”, Journal of Lipid Research, 49: 127-135, (2008).
  • [34] Yu, S.J., Kim, H., Min, H., Sohn, A., Cho, Y.Y., Yoo, J.J., Lee, D.H., Cho, E.J., Lee, J.H., Gim, J., Park, T., Kim, Y.J., Kim, C.Y., Yoon, J.H., and Kim, Y., “Targeted proteomics predicts a sustained complete-response after transarterial chemoembolization and clinical outcomes in patients with hepatocellular carcinoma: a prospective cohort study”, Journal of Proteome Research, 16(3): 1239-1248, (2017).
  • [35] Yue, C., Ren, Y., Ge, H., Liang, C., Xu, Y., Li, G. and Wu, J., “Comprehensive analysis of potential prognostic genes for the construction of a competing endogenous RNA regulatory network in hepatocellular carcinoma”, OncoTargets and Therapy, 12: 561-576, (2019).
  • [36] Jiang, C.H., Yuan, X., Li, J.F., Xie, Y.F., Zhang, A.Z., Wang, X.L., Yang, L., Liu, C.X., Liang, W.H., Pang, L.J., Zou, H., Cui, X.B., Shen, X.H., Qi, Y., Jiang, J.F., Gu, W.Y., Li, F. and Hu, J.M., “Bioinformatics-based screening of key genes for transformation of liver cirrhosis to hepatocellular carcinoma”, Journal of Translational Medicine, 18(40): (2020).
  • [37] Chen, Q.F., Xia, J.G., Li, W., Shen, L.J., Huang, T. and Wu, P., “Examining the key genes and pathways in hepatocellular carcinoma development from hepatitis B virus‑positive cirrhosis”, Molecular Medicine Reports, 18(6): 4940-4950, (2018).
  • [38] He, B., Yin, J., Gong, S., Gu, J., Xiao, J., Shi, W., Ding, W. and He, Y., “Bioinformatics analysis of key genes and pathways for hepatocellular carcinoma transformed from cirrhosis”, Medicine, 96(25): (2017).
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Computer Engineering
Authors

Saliha Acar 0000-0003-0297-4864

Gıyasettin Özcan 0000-0002-1166-5919

Eyyüp Gülbandılar 0000-0001-5559-5281

Early Pub Date May 2, 2023
Publication Date March 1, 2024
Published in Issue Year 2024 Volume: 37 Issue: 1

Cite

APA Acar, S., Özcan, G., & Gülbandılar, E. (2024). Investigation of Genes and Their Interactions in Liver Diseases Using Bioinformatics Algorithms. Gazi University Journal of Science, 37(1), 150-167. https://doi.org/10.35378/gujs.1182561
AMA Acar S, Özcan G, Gülbandılar E. Investigation of Genes and Their Interactions in Liver Diseases Using Bioinformatics Algorithms. Gazi University Journal of Science. March 2024;37(1):150-167. doi:10.35378/gujs.1182561
Chicago Acar, Saliha, Gıyasettin Özcan, and Eyyüp Gülbandılar. “Investigation of Genes and Their Interactions in Liver Diseases Using Bioinformatics Algorithms”. Gazi University Journal of Science 37, no. 1 (March 2024): 150-67. https://doi.org/10.35378/gujs.1182561.
EndNote Acar S, Özcan G, Gülbandılar E (March 1, 2024) Investigation of Genes and Their Interactions in Liver Diseases Using Bioinformatics Algorithms. Gazi University Journal of Science 37 1 150–167.
IEEE S. Acar, G. Özcan, and E. Gülbandılar, “Investigation of Genes and Their Interactions in Liver Diseases Using Bioinformatics Algorithms”, Gazi University Journal of Science, vol. 37, no. 1, pp. 150–167, 2024, doi: 10.35378/gujs.1182561.
ISNAD Acar, Saliha et al. “Investigation of Genes and Their Interactions in Liver Diseases Using Bioinformatics Algorithms”. Gazi University Journal of Science 37/1 (March 2024), 150-167. https://doi.org/10.35378/gujs.1182561.
JAMA Acar S, Özcan G, Gülbandılar E. Investigation of Genes and Their Interactions in Liver Diseases Using Bioinformatics Algorithms. Gazi University Journal of Science. 2024;37:150–167.
MLA Acar, Saliha et al. “Investigation of Genes and Their Interactions in Liver Diseases Using Bioinformatics Algorithms”. Gazi University Journal of Science, vol. 37, no. 1, 2024, pp. 150-67, doi:10.35378/gujs.1182561.
Vancouver Acar S, Özcan G, Gülbandılar E. Investigation of Genes and Their Interactions in Liver Diseases Using Bioinformatics Algorithms. Gazi University Journal of Science. 2024;37(1):150-67.