Research Article
BibTex RIS Cite
Year 2024, Volume: 37 Issue: 2, 969 - 977, 01.06.2024
https://doi.org/10.35378/gujs.1222023

Abstract

References

  • [1] Thobakgale, L., Ombinda-Lemboumba, S., Mthunzi-Kufa, P., “Chemical sensor nanotechnology in pharmaceutical drug research”, Nanomaterials, 12(15): 2688, (2022).
  • [2] Harmansah, C., Kutman, M. K., Muftuler, F. B., “Preparation of iron oxide nanoparticles by banana peels extract and its usage in NDT”, Measurement, 204: 112081, (2022).
  • [3] Dolev, S., Narayanan, R. P., Rosenblit, M., “Design of nanorobots for exposing cancer cells”, Nanotechnology, 30(31): 315501, (2019).
  • [4] Arachchillage, K. G. G. P., Chandra, S., Piso, A., Qattan, T., Vivancos, J. M. A., “RNA BioMolecular Electronics: towards new tools for biophysics and biomedicine”, Journal of Materials Chemistry B, 9(35): 6994-7006, (2021).
  • [5] Lee, Y., Park, J., Chung, D., Lee, K., Kim, S., “Multi-level cells and quantized conductance characteristics of Al2O3-based RRAM device for neuromorphic system”, Nanoscale Research Letters, 17(1): 1-10, (2021).
  • [6] Krinner, S., Stadler, D., Husmann, D., Brantut, J. P., Esslinger, T., "Observation of quantized conductance in neutral matter", Nature, 517(7532): 64-67, (2015).
  • [7] Van Wees, B. J., Van Houten, H., Beenakker, C. W. J., Williamson, J. G., Kouwenhoven, L. P., Van der Marel, D., Foxon, C. T., “Quantized conductance of point contacts in a two dimensional electron gas”, Physical Review Letters, 60(9): 848, (1988).
  • [8] Wharam, D. A., Thornton, T. J., Newbury, R., Pepper, M., Ahmed, H., Frost, J. E. F., Hasko, D. G., Peacock, D. C., Ritchie, D. A, Jones, G. A. C., “One-dimensional transport and the quantisation of the ballistic resistance”, Journal of Physics C: Solid State Physics, 21(8): L209, (1998).
  • [9] Brandbyge, M., Jacobsen K. W., Nørskov J. K., “Scattering and conductance quantization in three-dimensional metal nanocontact”, Physical Review B, 55: 2637, (1997).
  • [10] Susła, B., Wawrzyniak, M., Barnaś, J., Nawrocki, W., “Conductance quantization in magnetic and nonmagnetic metallic nanowires”, Materials Science-Poland, 25: 303, (2007).
  • [11] Arachchillage, K.G.G.P., Chandra, S., Piso, A., Qattan, T., Vivancos, J. M. A. “RNA BioMolecular Electronics: towards new tools for biophysics and biomedicine”, Journal of Materials Chemistry B, 9(35): 6994-7006, (2021).
  • [12] Li, C. Z., He, H. X., Bogozi, A., Bunch, J. S., Tao, N. J., “Molecular detection based on conductance quantization of nanowires”, Applied Physics Letters, 76: 1333-1335, (2007).
  • [13] Yoon, Y-G., Mazzoni, M. S. C., Louie, S. G., “Quantum conductance of carbon nanotube peapods”, Applied Physics Letters, 83: 5217-5219, (2003).
  • [14] Ono, T., Ooka, Y., Miyajima, H. ., Otani Y., “2e2/h to e2/h switching of quantum conductance associated with a change in a nanoscale ferromagnetic domain structure”, Applied Physics Letters, 75: 1622, (1999).
  • [15] Gabureac, M., Viret, M., Ott, F., Fermon, C., “Magnetoresistance in nanocontacts induced by magnetostrictive effects”, Physical Review B, 69: 10040, (2004).
  • [16] Jammalamadaka, S., N, Kuntz, S., Berg, O., Kittler, W., Kannan, U. M., Chelvane, J. A., Sürgers, C., “Remote control of magnetostriction-based nanocontacts at room temperature”, Scientific Reports, 5(1): 13621, (2015).
  • [17] Krans, J. M., Muller, C. J., Yanson, I. K., Govaert, Th. C. M., Hesper, R., van Ruitenbeek., “One-atom point contacts”, Physical Review B, 48: 14721, (1993).
  • [18] Muller, C. J., Krans J. M., Todorov T. N., Reed M. A., “ Quantization effects in the conductance of metallic contacts at room temperature”, Physical Review B, 53: 1022, (1996).
  • [19] Ott, F., Lunney, J., “Quantum conduction: a step-by-step guide”, Europhysics News, 29(1): 13-16, (1998).
  • [20] Hansen, K., Lægsgaard, E., Stensgaard, I., Besenbacher, F., “Quantized conductance in relays”, Physical Review B, 56(4): 2208, (1997). [21] Dokukin, S. A., Kolesnikov, S. V., Saletsky, A. M.,”Molecular dynamics simulation of the formation of Cu–Pt nanocontacts in the mechanically controlled break junction experiments”, Physical Chemistry Chemical Physics, 22(28): 16136-16142, (2020).
  • [22] Tolley, R., Silvidi, A., Little C., Eid, K. F., “Conductance quantization: A laboratory experiment in a senior-level nanoscale science and technology course”, American Journal of Physics, 81: 14-19, (2013).
  • [23] Borja, C., Sabater, C., Untiedt, C., Medina, E., Brämer-Escamilla, W., “Conductance quantization in atomic-sized gold contacts using a low-cost mechanically controllable break junction setup", European Journal of Physics, 41(6): 065401, (2020).
  • [24] Ozturk, Y., Yildirim, B., Sekerin, K., Bayram, A., “Quantized conductance measurement system for liquids and application to DNA solution”, Hittite Journal of Science and Engineering, 4(1): 51-55, (2017).
  • [25] Pascual, J. I., Mendez, J., Gomez-Herrero, J., Baro, A. M., Garcia, N., Thien Binh, V., “Quantum contact in gold nanostructures by scanning tunneling microscopy”, Physical Review Letters, 71(12): 1852, (1993).
  • [26] Pradhan, S., Chaudhuri, P. R., “Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles”, Applied Optics, 54(20): 6269-6276, (2015).
  • [27] Li, Y., Long, S., Liu, Y., Hu, C., Teng, J., Liu, Q., Lv, H., Suñé, J., Liu, M., “Conductance quantization in resistive random access memory”, Nanoscale Research Letters, 10: 1-30, (2015).
  • [28] Sabater, C., Palacios, J. J., Caturla, M. J., Untiedt, C., “Revealing the geometry and conductance of double-stranded atomic chains of gold”, The Journal of Physical Chemistry C, 124(49): 26596-26602, (2020).
  • [29] Brandbyge, M., Schiotz, J., Sorensen, M. R., Stoltze, P., Jacobsen, K. W., Norskov, J. K., Olesen, L., Laegsgaard, E., Stensgaard, I., Besenbacher, F., “Quantized conductance in atom-sized wires between two metals”, Physical Review B, 52(11): 8499-8514, (1995).

Observing Conductance Quantization by a Novel Magnetic Control System

Year 2024, Volume: 37 Issue: 2, 969 - 977, 01.06.2024
https://doi.org/10.35378/gujs.1222023

Abstract

In this study, a novel magnetic system that allows observing quantized conductance for undergraduate and graduate laboratories is presented. Bending of a magnetic cylindrical beam, like a cantilever, is controlled by an electromagnet to provide contact between needle type electrode and a plane of conductor. It is shown that by using the beam bending, it is possible to displace an object on the beam in nanometer and micrometer scale. The measured quantized conductance results prove that the designed system can be used for demonstration of the quantized conductance.

References

  • [1] Thobakgale, L., Ombinda-Lemboumba, S., Mthunzi-Kufa, P., “Chemical sensor nanotechnology in pharmaceutical drug research”, Nanomaterials, 12(15): 2688, (2022).
  • [2] Harmansah, C., Kutman, M. K., Muftuler, F. B., “Preparation of iron oxide nanoparticles by banana peels extract and its usage in NDT”, Measurement, 204: 112081, (2022).
  • [3] Dolev, S., Narayanan, R. P., Rosenblit, M., “Design of nanorobots for exposing cancer cells”, Nanotechnology, 30(31): 315501, (2019).
  • [4] Arachchillage, K. G. G. P., Chandra, S., Piso, A., Qattan, T., Vivancos, J. M. A., “RNA BioMolecular Electronics: towards new tools for biophysics and biomedicine”, Journal of Materials Chemistry B, 9(35): 6994-7006, (2021).
  • [5] Lee, Y., Park, J., Chung, D., Lee, K., Kim, S., “Multi-level cells and quantized conductance characteristics of Al2O3-based RRAM device for neuromorphic system”, Nanoscale Research Letters, 17(1): 1-10, (2021).
  • [6] Krinner, S., Stadler, D., Husmann, D., Brantut, J. P., Esslinger, T., "Observation of quantized conductance in neutral matter", Nature, 517(7532): 64-67, (2015).
  • [7] Van Wees, B. J., Van Houten, H., Beenakker, C. W. J., Williamson, J. G., Kouwenhoven, L. P., Van der Marel, D., Foxon, C. T., “Quantized conductance of point contacts in a two dimensional electron gas”, Physical Review Letters, 60(9): 848, (1988).
  • [8] Wharam, D. A., Thornton, T. J., Newbury, R., Pepper, M., Ahmed, H., Frost, J. E. F., Hasko, D. G., Peacock, D. C., Ritchie, D. A, Jones, G. A. C., “One-dimensional transport and the quantisation of the ballistic resistance”, Journal of Physics C: Solid State Physics, 21(8): L209, (1998).
  • [9] Brandbyge, M., Jacobsen K. W., Nørskov J. K., “Scattering and conductance quantization in three-dimensional metal nanocontact”, Physical Review B, 55: 2637, (1997).
  • [10] Susła, B., Wawrzyniak, M., Barnaś, J., Nawrocki, W., “Conductance quantization in magnetic and nonmagnetic metallic nanowires”, Materials Science-Poland, 25: 303, (2007).
  • [11] Arachchillage, K.G.G.P., Chandra, S., Piso, A., Qattan, T., Vivancos, J. M. A. “RNA BioMolecular Electronics: towards new tools for biophysics and biomedicine”, Journal of Materials Chemistry B, 9(35): 6994-7006, (2021).
  • [12] Li, C. Z., He, H. X., Bogozi, A., Bunch, J. S., Tao, N. J., “Molecular detection based on conductance quantization of nanowires”, Applied Physics Letters, 76: 1333-1335, (2007).
  • [13] Yoon, Y-G., Mazzoni, M. S. C., Louie, S. G., “Quantum conductance of carbon nanotube peapods”, Applied Physics Letters, 83: 5217-5219, (2003).
  • [14] Ono, T., Ooka, Y., Miyajima, H. ., Otani Y., “2e2/h to e2/h switching of quantum conductance associated with a change in a nanoscale ferromagnetic domain structure”, Applied Physics Letters, 75: 1622, (1999).
  • [15] Gabureac, M., Viret, M., Ott, F., Fermon, C., “Magnetoresistance in nanocontacts induced by magnetostrictive effects”, Physical Review B, 69: 10040, (2004).
  • [16] Jammalamadaka, S., N, Kuntz, S., Berg, O., Kittler, W., Kannan, U. M., Chelvane, J. A., Sürgers, C., “Remote control of magnetostriction-based nanocontacts at room temperature”, Scientific Reports, 5(1): 13621, (2015).
  • [17] Krans, J. M., Muller, C. J., Yanson, I. K., Govaert, Th. C. M., Hesper, R., van Ruitenbeek., “One-atom point contacts”, Physical Review B, 48: 14721, (1993).
  • [18] Muller, C. J., Krans J. M., Todorov T. N., Reed M. A., “ Quantization effects in the conductance of metallic contacts at room temperature”, Physical Review B, 53: 1022, (1996).
  • [19] Ott, F., Lunney, J., “Quantum conduction: a step-by-step guide”, Europhysics News, 29(1): 13-16, (1998).
  • [20] Hansen, K., Lægsgaard, E., Stensgaard, I., Besenbacher, F., “Quantized conductance in relays”, Physical Review B, 56(4): 2208, (1997). [21] Dokukin, S. A., Kolesnikov, S. V., Saletsky, A. M.,”Molecular dynamics simulation of the formation of Cu–Pt nanocontacts in the mechanically controlled break junction experiments”, Physical Chemistry Chemical Physics, 22(28): 16136-16142, (2020).
  • [22] Tolley, R., Silvidi, A., Little C., Eid, K. F., “Conductance quantization: A laboratory experiment in a senior-level nanoscale science and technology course”, American Journal of Physics, 81: 14-19, (2013).
  • [23] Borja, C., Sabater, C., Untiedt, C., Medina, E., Brämer-Escamilla, W., “Conductance quantization in atomic-sized gold contacts using a low-cost mechanically controllable break junction setup", European Journal of Physics, 41(6): 065401, (2020).
  • [24] Ozturk, Y., Yildirim, B., Sekerin, K., Bayram, A., “Quantized conductance measurement system for liquids and application to DNA solution”, Hittite Journal of Science and Engineering, 4(1): 51-55, (2017).
  • [25] Pascual, J. I., Mendez, J., Gomez-Herrero, J., Baro, A. M., Garcia, N., Thien Binh, V., “Quantum contact in gold nanostructures by scanning tunneling microscopy”, Physical Review Letters, 71(12): 1852, (1993).
  • [26] Pradhan, S., Chaudhuri, P. R., “Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles”, Applied Optics, 54(20): 6269-6276, (2015).
  • [27] Li, Y., Long, S., Liu, Y., Hu, C., Teng, J., Liu, Q., Lv, H., Suñé, J., Liu, M., “Conductance quantization in resistive random access memory”, Nanoscale Research Letters, 10: 1-30, (2015).
  • [28] Sabater, C., Palacios, J. J., Caturla, M. J., Untiedt, C., “Revealing the geometry and conductance of double-stranded atomic chains of gold”, The Journal of Physical Chemistry C, 124(49): 26596-26602, (2020).
  • [29] Brandbyge, M., Schiotz, J., Sorensen, M. R., Stoltze, P., Jacobsen, K. W., Norskov, J. K., Olesen, L., Laegsgaard, E., Stensgaard, I., Besenbacher, F., “Quantized conductance in atom-sized wires between two metals”, Physical Review B, 52(11): 8499-8514, (1995).
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Physics
Authors

Dila Çiğdem 0000-0002-8818-120X

Bilge Toprak Karakaya 0000-0002-4446-0864

Duru Değimli 0000-0002-1394-8488

Meltem Gönülol Çelikoğlu 0000-0003-1618-9947

Yavuz Öztürk 0000-0002-9650-6350

Early Pub Date August 24, 2023
Publication Date June 1, 2024
Published in Issue Year 2024 Volume: 37 Issue: 2

Cite

APA Çiğdem, D., Karakaya, B. T., Değimli, D., Gönülol Çelikoğlu, M., et al. (2024). Observing Conductance Quantization by a Novel Magnetic Control System. Gazi University Journal of Science, 37(2), 969-977. https://doi.org/10.35378/gujs.1222023
AMA Çiğdem D, Karakaya BT, Değimli D, Gönülol Çelikoğlu M, Öztürk Y. Observing Conductance Quantization by a Novel Magnetic Control System. Gazi University Journal of Science. June 2024;37(2):969-977. doi:10.35378/gujs.1222023
Chicago Çiğdem, Dila, Bilge Toprak Karakaya, Duru Değimli, Meltem Gönülol Çelikoğlu, and Yavuz Öztürk. “Observing Conductance Quantization by a Novel Magnetic Control System”. Gazi University Journal of Science 37, no. 2 (June 2024): 969-77. https://doi.org/10.35378/gujs.1222023.
EndNote Çiğdem D, Karakaya BT, Değimli D, Gönülol Çelikoğlu M, Öztürk Y (June 1, 2024) Observing Conductance Quantization by a Novel Magnetic Control System. Gazi University Journal of Science 37 2 969–977.
IEEE D. Çiğdem, B. T. Karakaya, D. Değimli, M. Gönülol Çelikoğlu, and Y. Öztürk, “Observing Conductance Quantization by a Novel Magnetic Control System”, Gazi University Journal of Science, vol. 37, no. 2, pp. 969–977, 2024, doi: 10.35378/gujs.1222023.
ISNAD Çiğdem, Dila et al. “Observing Conductance Quantization by a Novel Magnetic Control System”. Gazi University Journal of Science 37/2 (June 2024), 969-977. https://doi.org/10.35378/gujs.1222023.
JAMA Çiğdem D, Karakaya BT, Değimli D, Gönülol Çelikoğlu M, Öztürk Y. Observing Conductance Quantization by a Novel Magnetic Control System. Gazi University Journal of Science. 2024;37:969–977.
MLA Çiğdem, Dila et al. “Observing Conductance Quantization by a Novel Magnetic Control System”. Gazi University Journal of Science, vol. 37, no. 2, 2024, pp. 969-77, doi:10.35378/gujs.1222023.
Vancouver Çiğdem D, Karakaya BT, Değimli D, Gönülol Çelikoğlu M, Öztürk Y. Observing Conductance Quantization by a Novel Magnetic Control System. Gazi University Journal of Science. 2024;37(2):969-77.