Research Article
BibTex RIS Cite

Role of Inter-site Hubbard Interactions in MnS Monolayer: DFT+U+V Investigation

Year 2024, Volume: 37 Issue: 3, 1552 - 1559, 01.09.2024
https://doi.org/10.35378/gujs.1307490

Abstract

The stable MnS monolayer was recently predicted using first-principles density functional theory (DFT) including Hubbard U (DFT+U) correction and Monte Carlo (MC) simulations. It is shown to exhibit an indirect band gap of 0.68 eV semiconductor with a high Neel temperature (T_N) of 720 K and an in-plane easy axis magnetic anisotropy energy (MAE). The considered on-site Hubbard U correction takes into account only the Mn (3d) localized nature. To correct the inter-site errors due to strong hybridization between bonded Mn (3d) and S (2p) states, the Hubbard +V inter-site parameter should be added to the calculations. In this study, the band gap of MnS is found to be increased to 1.24 eV (twice that for DFT+U) after considering the inter-site V correction (DFT+U+V). Since the MnS monolayer prefers an in-plane easy axis for the MAE, the estimated Berezinskii Kosterlitz Thouless transition (BKT) transition temperature is as high as 1667.8 K. The carrier mobility is calculated based on the deformation potential and effective mass and it is found that holes (2.12 〖cm〗^2 v^(-1) S^(-1)) are twice the size of these electrons (1.21 〖cm〗^2 v^(-1) S^(-1)). The results are expected to improve the potential of the MnS monolayers in multiple AFM spintronic device applications.

References

  • [1] Zhang, H., Xiang, H., Dai, F.-z., Zhang, Z., Zhou, Y., “First demonstration of possible two-dimensional mbene crb derived from mab phase cr2alb2”, Journal of Materials Science & Technology, 34(11): 2022–2026, (2018).
  • [2] Wang, B., Zhang, Y., Ma, L., Wu, Q., Guo, Y., Zhang, X., Wang, J., “Mnx (x= p, as) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magneticanisotropy”, Nanoscale, 11(10): 4204–4209, (2019).
  • [3] Wu, Y.-Y., Bo, T., Zhu, X., Wang, Z., Wu, J., Li, Y., Wang, B.-T., “Two-dimensional tetragonal ti2bn: A novel potential anode material for li-ion batteries”, Applied Surface Science, 513: 145821, (2020).
  • [4] Escamilla, R., Carvajal, E., Cruz-Irisson, M., Morales, F., Huerta, L., Verdin, E., “Xps study of the electronic density of states in the superconducting mo2b and mo2bc compounds”, Journal of Materials Science, 51(13): 6411–6418, (2016).
  • [5] Bolvardi, H., Emmerlich, J., Music, D., von Appen J., Dronskowski, R., Schneider, J., “Systematic study on the electronic structure and mechanical properties of x2bc (x= mo, ti, v, zr, nb, hf, ta and w)”, Journal of Physics: Condensed Matter, 25(4): 045501, (2012).
  • [6] Barua P., Hossain, M., Ali, M., Uddin, M., Naqib, S., Islam, A., “Effects of transition metals on physical properties of m2bc (m= v, nb, mo and ta): a dft calculation”, Journal of Alloys and Compounds 770: 523–534, (2019).
  • [7] Abdullahi, Y. Z., Vatansever, Z. D., Akt¨urk, E., Akıncı, U., Akturk, O. U., “A tetragonal phase mn2b2 sheet: a stable room temperature ferromagnet with sizable magnetic anisotropy”, Physical Chemistry Chemical Physics, 22(19): 10893–10899, (2020).
  • [8] Hohenberg, P., Kohn, W., “Inhomogeneous electron gas”, Physical Review, 136(3B): B864, (1964).
  • [9] Cococcioni, M., De Gironcoli, S., “Linear response approach to the calculation of the effective interaction parameters in the lda+ u method”, Physical Review B, 71(3): 035105, (2005).
  • [10] Abdullahi, Y. Z., Ahmad, S., Ibrahim, A. A., “Effects of the hubbard u correction on the electronic and magnetic properties of the tetragonal v2p2 sheet”, RSC Advances, 11(56): 35061–35068, (2021).
  • [11] Abdullahi, Y. Z., Ersan, F., Vatansever, Z. D., Akturk, U., Akturk, O. U., “Exploring the potential of mnx (s, sb) monolayers for antiferromagnetic spintronics: A theoretical investigation”, Journal of Applied Physics, 128(11): 113903, (2020).
  • [12] Timrov, I., Marzari, N., Cococcioni, M., “Hubbard parameters from density-functional perturbation theory”, Physical Review B, 98(8): 085127, (2018).
  • [13] Timrov, I., Marzari, N., Cococcioni, M., “Self-consistent hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations”, Physical Review B, 103(4): 045141, (2021).
  • [14] Mahajan, R., Timrov, I., Marzari, N., Kashyap, A., “Importance of intersite hubbard interactions in β - mno2: A first-principles dft+ u+ v study”, Physical Review Materials, 5(10): 104402, (2021).
  • [15] Mahajan, R., Kashyap, A., Timrov, I., “Electronic structure and magnetism of pristine and fe-doped−mno2 from density-functional theory with extended hubbard functionals”, arXiv preprint arXiv:2205.05977, (2022).
  • [16] Giannozzi, P., Baroni, S., Bonini, N., Calandra, Car, M., R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, Dabo, M., I., et al., “Quantum espresso: a modular and open-source software project for quantum simulations of materials”, Journal of Physics: Condensed Matter, 21(39): 395502, (2009).
  • [17] Mayer, I., “On l¨owdin’s method of symmetric orthogonalization”, International Journal of Quantum Chemistry, 90(1): 63–65, (2002).
  • [18] Kresse, G., Joubert, D., “From ultrasoft pseudopotentials to the projector augmented-wave method”, Physical Review B, 59(3): 1758, (1999).
  • [19] Timrov, I., Marzari, N., Cococcioni, M., “Hp–a code for the calculation of hubbard parameters using densityfunctional perturbation theory”, arXiv preprint arXiv:2203.15684, (2022).
  • [20] Grimme, S., Antony, J., Ehrlich, S., Krieg, H., “A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu”, The Journal of Chemical Physics, 132(15): 154104, (2010).
  • [21] Marzari, N., Vanderbilt, D., De Vita, A., Payne, M., “Thermal contraction and disordering of the al (110) surface”, Physical Review Letters, 82(16): 3296, (1999).
  • [22] Monkhorst, H. J., Pack, J. D., “Special points for brillouin-zone integrations”, Physical Review B, 13(12): 5188, (1976).
  • [23] Bilitewski, T., Moessner, R., “Disordered flat bands on the kagome lattice”, Physical Review B, 98(23): 235109, (2018).
  • [24] Abdullahi, Y. Z., Vatansever, Z. D., Ersan, F., Akinci, U., Akturk, O., U., Akturk, E., “Ferromagnetic tm2bc (tm= cr, mn) monolayers for spintronic devices with high curie temperature”, Physical Chemistry Chemical Physics, 23(10): 6107–6115, (2021).
  • [25] Abdullahi, Y. Z., Vatansever, Z. D., Akturk, E., Akıncı, U., Akturk, O. U., “Novel two-dimensional crxb2 (x= cr, ru) metal for high n´eel temperature antiferromagnetic spintronics”, Journal of Solid State Chemistry, 302: 122427, (2021).
  • [26] Bergman, D. L., Wu, C., Balents, L., “Band touching from real-space topology in frustrated hopping models”, Physical Review B, 78(12): 125104, (2008).
  • [27] Bardeen, J., Shockley, W., “Deformation potentials and mobilities in non-polar crystals”, Physical Review, 80(1): 72, (1950). [28] Mermin, N. D., Wagner, H., “Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic heisenberg models”, Physical Review Letters, 17(22): 1133, (1966).
  • [29] Kosterlitz, J. M., Thouless, D. J., Ordering, metastability and phase transitions in two-dimensional systems”, Journal of Physics C: Solid State Physics, 6(7): 1181, (1973).
  • [30] Abdullahi, Y. Z., Ahmad, S., Ersan, F., “Exploring room-temperature ferromagnetism in wxbc (x= w, mn, fe) monolayers”, RSC Advances, 12(44): 28433–28440, (2022).
  • [31] Fern´andez, J. F., Ferreira, M. Stankiewicz, F., J., “Critical behavior of the two-dimensional xy model: A monte carlo simulation”, Physical Review B, 34(1): 292, (1986).
  • [32] Augustin, M., Jenkins, S., Evans, R. F., Novoselov, K. S., Santos, E. J., “Properties and dynamics of meron topological spin textures in the two-dimensional magnet crcl3”, Nature Communications, 12(1): 1–9, (2021).
  • [33] Takei, S., Tserkovnyak, Y., “Superfluid spin transport through easy-plane ferromagnetic insulators”, Physical Review Letters, 112(22): 227201, (2014).
  • [34] Sarah, J., Rózsa, L., Atxitia, U., FL Evans, R., Novoselov, K. S., and JG Santos, E., “Breaking through the Mermin-Wagner limit in 2D van der Waals magnets”, Nature Communications, 13(1): 6917, (2022).
Year 2024, Volume: 37 Issue: 3, 1552 - 1559, 01.09.2024
https://doi.org/10.35378/gujs.1307490

Abstract

References

  • [1] Zhang, H., Xiang, H., Dai, F.-z., Zhang, Z., Zhou, Y., “First demonstration of possible two-dimensional mbene crb derived from mab phase cr2alb2”, Journal of Materials Science & Technology, 34(11): 2022–2026, (2018).
  • [2] Wang, B., Zhang, Y., Ma, L., Wu, Q., Guo, Y., Zhang, X., Wang, J., “Mnx (x= p, as) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magneticanisotropy”, Nanoscale, 11(10): 4204–4209, (2019).
  • [3] Wu, Y.-Y., Bo, T., Zhu, X., Wang, Z., Wu, J., Li, Y., Wang, B.-T., “Two-dimensional tetragonal ti2bn: A novel potential anode material for li-ion batteries”, Applied Surface Science, 513: 145821, (2020).
  • [4] Escamilla, R., Carvajal, E., Cruz-Irisson, M., Morales, F., Huerta, L., Verdin, E., “Xps study of the electronic density of states in the superconducting mo2b and mo2bc compounds”, Journal of Materials Science, 51(13): 6411–6418, (2016).
  • [5] Bolvardi, H., Emmerlich, J., Music, D., von Appen J., Dronskowski, R., Schneider, J., “Systematic study on the electronic structure and mechanical properties of x2bc (x= mo, ti, v, zr, nb, hf, ta and w)”, Journal of Physics: Condensed Matter, 25(4): 045501, (2012).
  • [6] Barua P., Hossain, M., Ali, M., Uddin, M., Naqib, S., Islam, A., “Effects of transition metals on physical properties of m2bc (m= v, nb, mo and ta): a dft calculation”, Journal of Alloys and Compounds 770: 523–534, (2019).
  • [7] Abdullahi, Y. Z., Vatansever, Z. D., Akt¨urk, E., Akıncı, U., Akturk, O. U., “A tetragonal phase mn2b2 sheet: a stable room temperature ferromagnet with sizable magnetic anisotropy”, Physical Chemistry Chemical Physics, 22(19): 10893–10899, (2020).
  • [8] Hohenberg, P., Kohn, W., “Inhomogeneous electron gas”, Physical Review, 136(3B): B864, (1964).
  • [9] Cococcioni, M., De Gironcoli, S., “Linear response approach to the calculation of the effective interaction parameters in the lda+ u method”, Physical Review B, 71(3): 035105, (2005).
  • [10] Abdullahi, Y. Z., Ahmad, S., Ibrahim, A. A., “Effects of the hubbard u correction on the electronic and magnetic properties of the tetragonal v2p2 sheet”, RSC Advances, 11(56): 35061–35068, (2021).
  • [11] Abdullahi, Y. Z., Ersan, F., Vatansever, Z. D., Akturk, U., Akturk, O. U., “Exploring the potential of mnx (s, sb) monolayers for antiferromagnetic spintronics: A theoretical investigation”, Journal of Applied Physics, 128(11): 113903, (2020).
  • [12] Timrov, I., Marzari, N., Cococcioni, M., “Hubbard parameters from density-functional perturbation theory”, Physical Review B, 98(8): 085127, (2018).
  • [13] Timrov, I., Marzari, N., Cococcioni, M., “Self-consistent hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations”, Physical Review B, 103(4): 045141, (2021).
  • [14] Mahajan, R., Timrov, I., Marzari, N., Kashyap, A., “Importance of intersite hubbard interactions in β - mno2: A first-principles dft+ u+ v study”, Physical Review Materials, 5(10): 104402, (2021).
  • [15] Mahajan, R., Kashyap, A., Timrov, I., “Electronic structure and magnetism of pristine and fe-doped−mno2 from density-functional theory with extended hubbard functionals”, arXiv preprint arXiv:2205.05977, (2022).
  • [16] Giannozzi, P., Baroni, S., Bonini, N., Calandra, Car, M., R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, Dabo, M., I., et al., “Quantum espresso: a modular and open-source software project for quantum simulations of materials”, Journal of Physics: Condensed Matter, 21(39): 395502, (2009).
  • [17] Mayer, I., “On l¨owdin’s method of symmetric orthogonalization”, International Journal of Quantum Chemistry, 90(1): 63–65, (2002).
  • [18] Kresse, G., Joubert, D., “From ultrasoft pseudopotentials to the projector augmented-wave method”, Physical Review B, 59(3): 1758, (1999).
  • [19] Timrov, I., Marzari, N., Cococcioni, M., “Hp–a code for the calculation of hubbard parameters using densityfunctional perturbation theory”, arXiv preprint arXiv:2203.15684, (2022).
  • [20] Grimme, S., Antony, J., Ehrlich, S., Krieg, H., “A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu”, The Journal of Chemical Physics, 132(15): 154104, (2010).
  • [21] Marzari, N., Vanderbilt, D., De Vita, A., Payne, M., “Thermal contraction and disordering of the al (110) surface”, Physical Review Letters, 82(16): 3296, (1999).
  • [22] Monkhorst, H. J., Pack, J. D., “Special points for brillouin-zone integrations”, Physical Review B, 13(12): 5188, (1976).
  • [23] Bilitewski, T., Moessner, R., “Disordered flat bands on the kagome lattice”, Physical Review B, 98(23): 235109, (2018).
  • [24] Abdullahi, Y. Z., Vatansever, Z. D., Ersan, F., Akinci, U., Akturk, O., U., Akturk, E., “Ferromagnetic tm2bc (tm= cr, mn) monolayers for spintronic devices with high curie temperature”, Physical Chemistry Chemical Physics, 23(10): 6107–6115, (2021).
  • [25] Abdullahi, Y. Z., Vatansever, Z. D., Akturk, E., Akıncı, U., Akturk, O. U., “Novel two-dimensional crxb2 (x= cr, ru) metal for high n´eel temperature antiferromagnetic spintronics”, Journal of Solid State Chemistry, 302: 122427, (2021).
  • [26] Bergman, D. L., Wu, C., Balents, L., “Band touching from real-space topology in frustrated hopping models”, Physical Review B, 78(12): 125104, (2008).
  • [27] Bardeen, J., Shockley, W., “Deformation potentials and mobilities in non-polar crystals”, Physical Review, 80(1): 72, (1950). [28] Mermin, N. D., Wagner, H., “Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic heisenberg models”, Physical Review Letters, 17(22): 1133, (1966).
  • [29] Kosterlitz, J. M., Thouless, D. J., Ordering, metastability and phase transitions in two-dimensional systems”, Journal of Physics C: Solid State Physics, 6(7): 1181, (1973).
  • [30] Abdullahi, Y. Z., Ahmad, S., Ersan, F., “Exploring room-temperature ferromagnetism in wxbc (x= w, mn, fe) monolayers”, RSC Advances, 12(44): 28433–28440, (2022).
  • [31] Fern´andez, J. F., Ferreira, M. Stankiewicz, F., J., “Critical behavior of the two-dimensional xy model: A monte carlo simulation”, Physical Review B, 34(1): 292, (1986).
  • [32] Augustin, M., Jenkins, S., Evans, R. F., Novoselov, K. S., Santos, E. J., “Properties and dynamics of meron topological spin textures in the two-dimensional magnet crcl3”, Nature Communications, 12(1): 1–9, (2021).
  • [33] Takei, S., Tserkovnyak, Y., “Superfluid spin transport through easy-plane ferromagnetic insulators”, Physical Review Letters, 112(22): 227201, (2014).
  • [34] Sarah, J., Rózsa, L., Atxitia, U., FL Evans, R., Novoselov, K. S., and JG Santos, E., “Breaking through the Mermin-Wagner limit in 2D van der Waals magnets”, Nature Communications, 13(1): 6917, (2022).
There are 33 citations in total.

Details

Primary Language English
Subjects Architectural Heritage and Conservation
Journal Section Physics
Authors

Yusuf Zuntu Abdullahi 0000-0001-7730-1643

Early Pub Date January 26, 2024
Publication Date September 1, 2024
Published in Issue Year 2024 Volume: 37 Issue: 3

Cite

APA Abdullahi, Y. Z. (2024). Role of Inter-site Hubbard Interactions in MnS Monolayer: DFT+U+V Investigation. Gazi University Journal of Science, 37(3), 1552-1559. https://doi.org/10.35378/gujs.1307490
AMA Abdullahi YZ. Role of Inter-site Hubbard Interactions in MnS Monolayer: DFT+U+V Investigation. Gazi University Journal of Science. September 2024;37(3):1552-1559. doi:10.35378/gujs.1307490
Chicago Abdullahi, Yusuf Zuntu. “Role of Inter-Site Hubbard Interactions in MnS Monolayer: DFT+U+V Investigation”. Gazi University Journal of Science 37, no. 3 (September 2024): 1552-59. https://doi.org/10.35378/gujs.1307490.
EndNote Abdullahi YZ (September 1, 2024) Role of Inter-site Hubbard Interactions in MnS Monolayer: DFT+U+V Investigation. Gazi University Journal of Science 37 3 1552–1559.
IEEE Y. Z. Abdullahi, “Role of Inter-site Hubbard Interactions in MnS Monolayer: DFT+U+V Investigation”, Gazi University Journal of Science, vol. 37, no. 3, pp. 1552–1559, 2024, doi: 10.35378/gujs.1307490.
ISNAD Abdullahi, Yusuf Zuntu. “Role of Inter-Site Hubbard Interactions in MnS Monolayer: DFT+U+V Investigation”. Gazi University Journal of Science 37/3 (September 2024), 1552-1559. https://doi.org/10.35378/gujs.1307490.
JAMA Abdullahi YZ. Role of Inter-site Hubbard Interactions in MnS Monolayer: DFT+U+V Investigation. Gazi University Journal of Science. 2024;37:1552–1559.
MLA Abdullahi, Yusuf Zuntu. “Role of Inter-Site Hubbard Interactions in MnS Monolayer: DFT+U+V Investigation”. Gazi University Journal of Science, vol. 37, no. 3, 2024, pp. 1552-9, doi:10.35378/gujs.1307490.
Vancouver Abdullahi YZ. Role of Inter-site Hubbard Interactions in MnS Monolayer: DFT+U+V Investigation. Gazi University Journal of Science. 2024;37(3):1552-9.