Research Article
BibTex RIS Cite

Biogenic Synthesis of Zinc Oxide Nanoparticles with Leaves and Cones Concentrate of Cupressus Arizonica and Assessment of Photocatalytic and Antibacterial Efficiency

Year 2024, Volume: 37 Issue: 3, 1107 - 1130, 01.09.2024
https://doi.org/10.35378/gujs.1344908

Abstract

Among the metal oxide nanoparticles, zinc oxide (ZnO) has recently been cited as the new material of the future due to its unique properties and wide application areas. In this study, we offer a simple technique for the production of extremely stable ZnO nanoparticles (CA-ZnO NPs) using the aqueous and ethyl alcohol (1/1, v/v) extract of Cupressus arizonica (CA, Blue cypress) leaves and cones and zinc acetate (Zn-Ac) salt. The structure of the produced CA-ZnO NPs was elucidated and nanoparticles were used as a photocatalyst for the removal of textile dyestuffs. The particle sizes of CA-ZnO NPs calcined at different temperatures (60ºC, 150ºC, and 400ºC) increased from 20 nm to 50 nm. Produced CA-ZnO NPs were used to investigate photocatalytic degradation of Basic Yellow (BY28), Basic Violet 39 (BV39), Methylene blue (MB), Brilliant Blue (BB3) and Basic Red 46 (BR46) in aqueous solution under UV- light and daylight irradiation. After stirring dye solutions containing CA-ZnO NP for one hour in darkness and 7 hours under UV- light, decolorization rates varied from 53% to 100%. Decolorization of the dyestuff molecules follows the pseudo first-order kinetics. Produced CA-ZnO NPs showed antibacterial efficiency against Escherichia coli and Staphylococcus aureus. CA-ZnO NPs formed zones ranging from 10 mm to 11 mm against gram+ and gram- bacteria. Green production of ZnO NPs utilizing Cupressus arizonica plant extract can replace chemical methods, and the resulting CA-ZnO NPs can be used in industries like water purification. This eco-friendly biogenic synthesis method is a new, inexpensive and useful technique suitable for large scale.

References

  • [1] Narayanan, K. B., Sakthivel, N., “Biological synthesis of metal nanoparticles by microbes”, Advances in Colloid and Interface Science, 156:1-13, (2010).
  • [2] Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., De, S. P., Misra, A., “Green synthesis of silver nanoparticles using latex of Jatropha curcas”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339: 134-139, (2009).
  • [3] Thombre, R., Chitnis A., Kadam V., Bogawat Y., Colaco R., Kale A., “A facile method for synthesis of biostabilized silver nanoparticles using Eicchornia crassipes water hyacinth (Mart.) Solms (water hyacinth)”, Indian Journal of Biotechnology, 13: 337–341, (2014).
  • [4] Abbasi, B. A., Iqbal, J., Ahmad, R., Zia, L., Kanwal, S., Mahmood, T., Chen, J. T. “Bioactivities of Geranium wallichianum Leaf Extracts Conjugated with Zinc Oxide Nanoparticles”, Biomolecules, 10, 38: 1-19, (2020).
  • [5] Nava, O. J., Luque, P. A., Gómez-Gutiérrez, C. M., Vilchis-Nestor, A. R., Castro-Beltrán, A., Mota-González, M. L., Olivas, A., “Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis”, Journal of Molecular Structure, 1134: 121-125, (2017).
  • [6] Kumar, A. K., Saila, E. S., Narang, P., Aishwarya, M., Raina, R., Gautam, M., Shankar, E. G., “Biofunctionalization and biological synthesis of the ZnO nanoparticles: the effect of Raphanus sativus (white radish) root extract on antimicrobial activity against MDR strain for wound healing applications”, Inorganic Chemistry Communications, 100: 101-106, (2019).
  • [7] Ogunyemi, S. O., Abdallah, Y., Zhang, M., Fouad, H., Hong, X., Ibrahim, E., Li, B., “Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. Oryzae”, Artificial Cells, Nanomedicine and Biotechnology, 47(1): 341-352, (2019).
  • [8] Shah, R. K., Boruah, F., Parween, N., “Synthesis and characterization of ZnO nanoparticles using leaf extract of Camellia sinesis and evaluation of their antimicrobial efficacy”, International Journal of Current Microbiology and Applied Sciences, 4(8): 444-450, (2015).
  • [9] Ahmad, W., Kalra, D., “Green Synthesis, Characterization and Anti microbial Activities of ZnO Nanoparticles Using Euphorbia hirta leaf extract”, Journal of King Saud University-Science, 32(4): 2358-2364, (2020).
  • [10] Vinayagam, R., Selvaraj, R., Arivalagan, P., Varadavenkatesan, T., “Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers”, Journal of Photochemistry and Photobiology B: Biology, 203: 111760, (2020).
  • [11] Yuvakkumar, R., Suresh, J., Nathanael, A. J., Sundrarajan, M., Hong, S. I., “Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications”, Materials Science and Engineering:C, 41: 17-27, (2014).
  • [12] Thema, F. T., Manikandan, E., Dhlamini, M. S., Maaza, M., “Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract”, Materials Letters, 161: 124-127, (2015).
  • [13] Ustun Ozgur, M., Duygulu, O., Altikatoglu Yapaoz, M., “Investigation of antibacterial and photocatalytic efficiency of green ZnO nanoparticles that synthesized with Celosia Cristata flower extract”, Turkish Journal of Chemistry, 46(1): 59-85, (2022).
  • [14] Akbar, A., Sadiq, M. B., Ali, I., Muhammad, N., Rehman, Z., Khan, M. N., Anal, A. K., “Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus”, Biocatalysis and Agricultural Biotechnology, 17: 36-42, (2019).
  • [15] Agarwal, H., Kumar, S. V., Rajeshkumar, S., “A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach”, Resource-Efficient Technologies, 3(4): 406-413, (2017).
  • [16] Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., Buszewski, B., “Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism”, Advances in Colloid and Interface Science, 249: 37-52, (2017).
  • [17] Sasidharan, S., Raj, S., Sonawane, S., Pinjari, D., Pandit, A. B., Saudagar, P., “Nanomaterial synthesis: chemical and biological route and applications”, In Nanomaterials Synthesis (pp. 27-51). Elsevier. (2019).
  • [18] Yusof, N. A. A., Zain, N. M., Pauzi, N., “Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria”, International Journal of Biological Macromolecules, 124: 1132-1136, (2019).
  • [19] Ahmadi Shadmehri, A., Namvar, F., “A Review on Green Synthesis, Cytotoxicity Mechanism and Antibacterial Activity of ZnO-NPs”, International Journal of Research in Applied and Basic Medical Sciences, 6(1): 23-31, (2020).
  • [20] Sabir, S., Arshad, M., Chaudhari, S. K., “Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications”, The Scientific World Journal, 2014: 1-8, (2014).
  • [21] Mochane, M. J., Motloung, M. T., Mokhena, T.C., Mofokeng, T.G., “Morphology and Photocatalytic Activity of Zinc Oxide Reinforced Polymer Composites: A Mini Review”, Catalysts, 12(11): 1439, (2022).
  • [22] Ramos, P.G., Sánchez, L.A., Rodriguez J.M., “Review paper: sol–gel and hybrid materials for optical, photonic and optoelectronic applications, A review on improving the efficiency of photocatalytic water decontamination using ZnO nanorods”, Journal of Sol-Gel Science and Technology, 102:105–124, (2022).
  • [23] Servi Uçucu Yağı: Faydaları, Özellikleri ve Kullanımları. https://aromaterapio.com
  • [24] Bauer A.W., Kirby W.M., Sherris J.C., Turck M., “Antibiotic Susceptibility Testing by a Standardized Single Disc Method”, American Journal of Clinical Pathology, 45(4): 493-6, (1966).
  • [25] Ezealisiji, K.M., Siwe-Noundou, X., Maduelosi, B., Nwachukwu, N.W., Krause, R.W.M., “Green Synthesis of Zinc Oxide Nanoparticles Using Solanum torvum (L) Leaf Extract and Evaluation of the Toxicological Profile of the ZnO Nanoparticles-Hydrogel Composite in Wistar Albino Rats”, International Nano Letters, 9: 99–107, (2019).
  • [26] Suresh, J., Pradheesh, G., Alexramani, V., Sundrarajan, M., Hong, S.I., “Green Synthesis and Characterization of Zinc Oxide Nanoparticle Using Insulin Plant (Costus pictus D. Don) and Investigation of its Antimicrobial as Well as Anticancer Activities”, Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(1): 015008–015016, (2018).
  • [27] Safawo T., Sandeep B.V., Pola, S., Tadesse, A., “Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment”, OpenNano, 3: 56-63, (2018).
  • [28] Donmez S., “Green Synthesis of Zinc Oxide Nanoparticles Using Zingiber Officinale Root Extract and Their Applications in Glucose Biosensor”, El-Cezerî Journal of Science and Engineering, 7 (3): 1191-1200, (2020).
  • [29] Oman, Z., Harry, B., Nuryatini, H., (2013). “ Synthesis of ZnO nanoparticles for microwave-induced rapid catalytic decolorization of congo red dye ”, Advanced Materials Letters, 4: 662-667, (2013).
  • [30] Nagarajan, S., Kuppusamy, K. A., “Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar India”, Journal of Nanobiotechnology, 11(1): 1-11, (2013).
  • [31] Madan, H.R., Sharma, S.C., Udayabhanu., Suresh, D., Vidya, Y.S., Nagabhushana, H., Rajanaik, H., Anantharaju, K.S., Prashantha, S.C., Sadananda Maiya, P., “Facile Green Fabrication of Nanostructure ZnO Plates, Bullets, Flower, Prismatic Tip, Closed Pine cone: Their Antibacterial, Antioxidant, Photoluminescent and Photocatalytic Properties”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 152: 404-416, (2016).
  • [32] Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., Adaikala Raj, G., “Bio-Approach: Plant Mediated Synthesis of ZnO Nanoparticles and Their Catalytic Reduction of Methylene Blue and Antimicrobial Activity”, Advanced Powder Technology, 26(6): 1639-1651, (2015).
  • [33] Srinivasa Rao, N., Basaveswara Rao, M.V., “Structural and Optical Investigation of ZnO Nanopowders Synthesized from Zinc Chloride and Zinc Nitrate”, American Journal of Materials Science, 5: 66-68, (2015).
  • [34] Zhang, J., Tian, B., Wang, L., Xing, M., Lei, J., “Mechanism of Photocatalysis. In: Photocatalysis”, Lecture Notes in Chemistry, vol 100. Springer, Singapore, (2018).
  • [35] Saravanan, R., Gracia, F., Stephen, A., “Basic Principles, Mechanism, and Challenges of Photocatalysis. In: Khan, M., Pradhan, D., Sohn, Y. (eds) Nanocomposites for Visible Light-induced Photocatalysis”, Springer Series on Polymer and Composite Materials. Springer, Cham. (2017).
  • [36] Ong, C.B., Ng, L.Y., Mohammad, A. W., “A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications”, Renewable and Sustainable Energy Reviews, 81: 536-551, (2018).
  • [37] Pai, S., Sridevi, H., Varadavenkatesan, T., Vinayagam, R., Selvaraj, R., “Photocatalytic zinc oxide nanoparticles synthesis using Peltophorum pterocarpum leaf extract and their characterization”, Optik, 185: 248-255, (2019).
  • [38] Neppolian, B., Sakthivel, S., Arabindoo, B., Palanichamy, M., Murugesan, V., “Degradation of textile dye by solar light using TiO2 and ZnO photocatalysts Journal of Environmental Science and Health Part A Toxic/ Hazardous Substances & Environmental Engineering”, 34(9):1829-1838, (2008).
  • [39] Chen, L., Batjikh, I., Hurh, J., Han, Y., Huo, Y., Ali, H., Li, J.F., Rupa, E.J. Ahn, J.C. Mathiyalagan, R., “Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue”, Optik, 184: 324–329, (2019).
  • [40] Zare, M., Namratha, K., Thakur, M. S., Byrappa, K., “Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus vulgaris leaf extract”, Materials Research Bulletin, 109: 49-59, (2019).
  • [41] Ganesh, M., Gil Lee, S., Jayaprakash, J., Mohankumar, M., Jang, H.T., “Hydnocarpus alpina Wt extract mediated green synthesis of ZnO nanoparticle and screening of its anti-microbial, free radical scavenging, and photocatalytic activity”, Biocatalysis and Agricultural Biotechnology, 19: 101129, (2019).
  • [42] Şendal, K., Özgür, M., Gülen, F. J., “Biosynthesis of ZnO photocatalyst and its application in photo catalytic degradation of methylene blue dyestuff”, Journal of Dispersion Science and Technology, 1-14, (2022).
  • [43] Saraswathi, V.S., Tatsugi, J., Shin, P.K., Santhakumar, K., “Facile biosynthesis, characterization, and solar assisted photocatalytic effect of ZnO nanoparticles mediated by leaves of L. Speciosa”, Journal of Photochemistry and Photobiology B: Biology, 167: 89-98, (2017).
  • [44] Nava, O. J., Soto-Robles, C. A., Gómez-Gutiérrez, C. M., Vilchis-Nestor, A. R., Castro-Beltrán, A., Olivas, A., Luque, P. A., “Fruit peel extract mediated green synthesis of zinc oxide nanoparticles”, Journal of Molecular Structure, 1147: 1-6, (2017).
  • [45] Madh Madhumitha, G., Fowsiya, J., Gupta, N., Kumar, A., Singh, M., “Green synthesis, characterization and antifungal and photocatalytic activity of Pithecellobium dulce peel–mediated ZnO nanoparticles”, Journal of Physics and Chemistry of Solids, 127: 43-51, (2019).
  • [46] Khan, Z. U. H., Sadiq, H. M., Shah, N. S., Khan, A. U., Muhammad, N., Hassan, S. U., Ullah, F., “Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications”, Journal of Photochemistry and Photobiology B: Biology, 192: 147-157, (2019).
  • [47] Nourbakhsh, M., Darroudi, M., Gholizadeh, M., “Role of bio-derived zinc oxide nanoparticles in antifungal and photocatalytic activities”, Research on Chemical Intermediates, 46(1): 243-252, (2020).
  • [48] Zhang, L., Jiang, Y., Ding, Y., Povey, M., York, D., “Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids)”, Journal of Nanoparticle Research, 9(3): 479-489, (2007).
  • [49] Singh, A. K., Pal, P., Yadav, T. P., Gupta, V., Singh, S. P., “Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba”, Materials Chemistry and Physics, 203: 40-48, (2018).
  • [50] Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O., “Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity”, Chemistry International, 6(3): 151-159, (2020).
  • [51] Ramesh, M., Anbuvannan, M., Viruthagiri, G., “Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 864-870, (2015).
  • [52] Nilavukkarasi, M., Vijayakumar, S., Prathipkumar, S., “Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications”, Materials Science for Energy Technologies, 3: 335-343, (2020).
  • [53] Kumar, R., Umar, A., Kumar, G., Nalwa, H. S., “Antimicrobial properties of ZnO nanomaterials: A review”, Ceramics International, 43(5): 3940-3961, (2017).
  • [54] Azizi, S., Mohamad, R., Bahadoran, A., Bayat, S., Rahim, R. A., Ariff, A., Saad, W. Z., “Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica”, Journal of Photochemistry and Photobiology B: Biology, 161:441-449, (2016).
Year 2024, Volume: 37 Issue: 3, 1107 - 1130, 01.09.2024
https://doi.org/10.35378/gujs.1344908

Abstract

References

  • [1] Narayanan, K. B., Sakthivel, N., “Biological synthesis of metal nanoparticles by microbes”, Advances in Colloid and Interface Science, 156:1-13, (2010).
  • [2] Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., De, S. P., Misra, A., “Green synthesis of silver nanoparticles using latex of Jatropha curcas”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339: 134-139, (2009).
  • [3] Thombre, R., Chitnis A., Kadam V., Bogawat Y., Colaco R., Kale A., “A facile method for synthesis of biostabilized silver nanoparticles using Eicchornia crassipes water hyacinth (Mart.) Solms (water hyacinth)”, Indian Journal of Biotechnology, 13: 337–341, (2014).
  • [4] Abbasi, B. A., Iqbal, J., Ahmad, R., Zia, L., Kanwal, S., Mahmood, T., Chen, J. T. “Bioactivities of Geranium wallichianum Leaf Extracts Conjugated with Zinc Oxide Nanoparticles”, Biomolecules, 10, 38: 1-19, (2020).
  • [5] Nava, O. J., Luque, P. A., Gómez-Gutiérrez, C. M., Vilchis-Nestor, A. R., Castro-Beltrán, A., Mota-González, M. L., Olivas, A., “Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis”, Journal of Molecular Structure, 1134: 121-125, (2017).
  • [6] Kumar, A. K., Saila, E. S., Narang, P., Aishwarya, M., Raina, R., Gautam, M., Shankar, E. G., “Biofunctionalization and biological synthesis of the ZnO nanoparticles: the effect of Raphanus sativus (white radish) root extract on antimicrobial activity against MDR strain for wound healing applications”, Inorganic Chemistry Communications, 100: 101-106, (2019).
  • [7] Ogunyemi, S. O., Abdallah, Y., Zhang, M., Fouad, H., Hong, X., Ibrahim, E., Li, B., “Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. Oryzae”, Artificial Cells, Nanomedicine and Biotechnology, 47(1): 341-352, (2019).
  • [8] Shah, R. K., Boruah, F., Parween, N., “Synthesis and characterization of ZnO nanoparticles using leaf extract of Camellia sinesis and evaluation of their antimicrobial efficacy”, International Journal of Current Microbiology and Applied Sciences, 4(8): 444-450, (2015).
  • [9] Ahmad, W., Kalra, D., “Green Synthesis, Characterization and Anti microbial Activities of ZnO Nanoparticles Using Euphorbia hirta leaf extract”, Journal of King Saud University-Science, 32(4): 2358-2364, (2020).
  • [10] Vinayagam, R., Selvaraj, R., Arivalagan, P., Varadavenkatesan, T., “Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers”, Journal of Photochemistry and Photobiology B: Biology, 203: 111760, (2020).
  • [11] Yuvakkumar, R., Suresh, J., Nathanael, A. J., Sundrarajan, M., Hong, S. I., “Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications”, Materials Science and Engineering:C, 41: 17-27, (2014).
  • [12] Thema, F. T., Manikandan, E., Dhlamini, M. S., Maaza, M., “Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract”, Materials Letters, 161: 124-127, (2015).
  • [13] Ustun Ozgur, M., Duygulu, O., Altikatoglu Yapaoz, M., “Investigation of antibacterial and photocatalytic efficiency of green ZnO nanoparticles that synthesized with Celosia Cristata flower extract”, Turkish Journal of Chemistry, 46(1): 59-85, (2022).
  • [14] Akbar, A., Sadiq, M. B., Ali, I., Muhammad, N., Rehman, Z., Khan, M. N., Anal, A. K., “Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus”, Biocatalysis and Agricultural Biotechnology, 17: 36-42, (2019).
  • [15] Agarwal, H., Kumar, S. V., Rajeshkumar, S., “A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach”, Resource-Efficient Technologies, 3(4): 406-413, (2017).
  • [16] Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., Buszewski, B., “Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism”, Advances in Colloid and Interface Science, 249: 37-52, (2017).
  • [17] Sasidharan, S., Raj, S., Sonawane, S., Pinjari, D., Pandit, A. B., Saudagar, P., “Nanomaterial synthesis: chemical and biological route and applications”, In Nanomaterials Synthesis (pp. 27-51). Elsevier. (2019).
  • [18] Yusof, N. A. A., Zain, N. M., Pauzi, N., “Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria”, International Journal of Biological Macromolecules, 124: 1132-1136, (2019).
  • [19] Ahmadi Shadmehri, A., Namvar, F., “A Review on Green Synthesis, Cytotoxicity Mechanism and Antibacterial Activity of ZnO-NPs”, International Journal of Research in Applied and Basic Medical Sciences, 6(1): 23-31, (2020).
  • [20] Sabir, S., Arshad, M., Chaudhari, S. K., “Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications”, The Scientific World Journal, 2014: 1-8, (2014).
  • [21] Mochane, M. J., Motloung, M. T., Mokhena, T.C., Mofokeng, T.G., “Morphology and Photocatalytic Activity of Zinc Oxide Reinforced Polymer Composites: A Mini Review”, Catalysts, 12(11): 1439, (2022).
  • [22] Ramos, P.G., Sánchez, L.A., Rodriguez J.M., “Review paper: sol–gel and hybrid materials for optical, photonic and optoelectronic applications, A review on improving the efficiency of photocatalytic water decontamination using ZnO nanorods”, Journal of Sol-Gel Science and Technology, 102:105–124, (2022).
  • [23] Servi Uçucu Yağı: Faydaları, Özellikleri ve Kullanımları. https://aromaterapio.com
  • [24] Bauer A.W., Kirby W.M., Sherris J.C., Turck M., “Antibiotic Susceptibility Testing by a Standardized Single Disc Method”, American Journal of Clinical Pathology, 45(4): 493-6, (1966).
  • [25] Ezealisiji, K.M., Siwe-Noundou, X., Maduelosi, B., Nwachukwu, N.W., Krause, R.W.M., “Green Synthesis of Zinc Oxide Nanoparticles Using Solanum torvum (L) Leaf Extract and Evaluation of the Toxicological Profile of the ZnO Nanoparticles-Hydrogel Composite in Wistar Albino Rats”, International Nano Letters, 9: 99–107, (2019).
  • [26] Suresh, J., Pradheesh, G., Alexramani, V., Sundrarajan, M., Hong, S.I., “Green Synthesis and Characterization of Zinc Oxide Nanoparticle Using Insulin Plant (Costus pictus D. Don) and Investigation of its Antimicrobial as Well as Anticancer Activities”, Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(1): 015008–015016, (2018).
  • [27] Safawo T., Sandeep B.V., Pola, S., Tadesse, A., “Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment”, OpenNano, 3: 56-63, (2018).
  • [28] Donmez S., “Green Synthesis of Zinc Oxide Nanoparticles Using Zingiber Officinale Root Extract and Their Applications in Glucose Biosensor”, El-Cezerî Journal of Science and Engineering, 7 (3): 1191-1200, (2020).
  • [29] Oman, Z., Harry, B., Nuryatini, H., (2013). “ Synthesis of ZnO nanoparticles for microwave-induced rapid catalytic decolorization of congo red dye ”, Advanced Materials Letters, 4: 662-667, (2013).
  • [30] Nagarajan, S., Kuppusamy, K. A., “Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar India”, Journal of Nanobiotechnology, 11(1): 1-11, (2013).
  • [31] Madan, H.R., Sharma, S.C., Udayabhanu., Suresh, D., Vidya, Y.S., Nagabhushana, H., Rajanaik, H., Anantharaju, K.S., Prashantha, S.C., Sadananda Maiya, P., “Facile Green Fabrication of Nanostructure ZnO Plates, Bullets, Flower, Prismatic Tip, Closed Pine cone: Their Antibacterial, Antioxidant, Photoluminescent and Photocatalytic Properties”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 152: 404-416, (2016).
  • [32] Elumalai, K., Velmurugan, S., Ravi, S., Kathiravan, V., Adaikala Raj, G., “Bio-Approach: Plant Mediated Synthesis of ZnO Nanoparticles and Their Catalytic Reduction of Methylene Blue and Antimicrobial Activity”, Advanced Powder Technology, 26(6): 1639-1651, (2015).
  • [33] Srinivasa Rao, N., Basaveswara Rao, M.V., “Structural and Optical Investigation of ZnO Nanopowders Synthesized from Zinc Chloride and Zinc Nitrate”, American Journal of Materials Science, 5: 66-68, (2015).
  • [34] Zhang, J., Tian, B., Wang, L., Xing, M., Lei, J., “Mechanism of Photocatalysis. In: Photocatalysis”, Lecture Notes in Chemistry, vol 100. Springer, Singapore, (2018).
  • [35] Saravanan, R., Gracia, F., Stephen, A., “Basic Principles, Mechanism, and Challenges of Photocatalysis. In: Khan, M., Pradhan, D., Sohn, Y. (eds) Nanocomposites for Visible Light-induced Photocatalysis”, Springer Series on Polymer and Composite Materials. Springer, Cham. (2017).
  • [36] Ong, C.B., Ng, L.Y., Mohammad, A. W., “A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications”, Renewable and Sustainable Energy Reviews, 81: 536-551, (2018).
  • [37] Pai, S., Sridevi, H., Varadavenkatesan, T., Vinayagam, R., Selvaraj, R., “Photocatalytic zinc oxide nanoparticles synthesis using Peltophorum pterocarpum leaf extract and their characterization”, Optik, 185: 248-255, (2019).
  • [38] Neppolian, B., Sakthivel, S., Arabindoo, B., Palanichamy, M., Murugesan, V., “Degradation of textile dye by solar light using TiO2 and ZnO photocatalysts Journal of Environmental Science and Health Part A Toxic/ Hazardous Substances & Environmental Engineering”, 34(9):1829-1838, (2008).
  • [39] Chen, L., Batjikh, I., Hurh, J., Han, Y., Huo, Y., Ali, H., Li, J.F., Rupa, E.J. Ahn, J.C. Mathiyalagan, R., “Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue”, Optik, 184: 324–329, (2019).
  • [40] Zare, M., Namratha, K., Thakur, M. S., Byrappa, K., “Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus vulgaris leaf extract”, Materials Research Bulletin, 109: 49-59, (2019).
  • [41] Ganesh, M., Gil Lee, S., Jayaprakash, J., Mohankumar, M., Jang, H.T., “Hydnocarpus alpina Wt extract mediated green synthesis of ZnO nanoparticle and screening of its anti-microbial, free radical scavenging, and photocatalytic activity”, Biocatalysis and Agricultural Biotechnology, 19: 101129, (2019).
  • [42] Şendal, K., Özgür, M., Gülen, F. J., “Biosynthesis of ZnO photocatalyst and its application in photo catalytic degradation of methylene blue dyestuff”, Journal of Dispersion Science and Technology, 1-14, (2022).
  • [43] Saraswathi, V.S., Tatsugi, J., Shin, P.K., Santhakumar, K., “Facile biosynthesis, characterization, and solar assisted photocatalytic effect of ZnO nanoparticles mediated by leaves of L. Speciosa”, Journal of Photochemistry and Photobiology B: Biology, 167: 89-98, (2017).
  • [44] Nava, O. J., Soto-Robles, C. A., Gómez-Gutiérrez, C. M., Vilchis-Nestor, A. R., Castro-Beltrán, A., Olivas, A., Luque, P. A., “Fruit peel extract mediated green synthesis of zinc oxide nanoparticles”, Journal of Molecular Structure, 1147: 1-6, (2017).
  • [45] Madh Madhumitha, G., Fowsiya, J., Gupta, N., Kumar, A., Singh, M., “Green synthesis, characterization and antifungal and photocatalytic activity of Pithecellobium dulce peel–mediated ZnO nanoparticles”, Journal of Physics and Chemistry of Solids, 127: 43-51, (2019).
  • [46] Khan, Z. U. H., Sadiq, H. M., Shah, N. S., Khan, A. U., Muhammad, N., Hassan, S. U., Ullah, F., “Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications”, Journal of Photochemistry and Photobiology B: Biology, 192: 147-157, (2019).
  • [47] Nourbakhsh, M., Darroudi, M., Gholizadeh, M., “Role of bio-derived zinc oxide nanoparticles in antifungal and photocatalytic activities”, Research on Chemical Intermediates, 46(1): 243-252, (2020).
  • [48] Zhang, L., Jiang, Y., Ding, Y., Povey, M., York, D., “Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids)”, Journal of Nanoparticle Research, 9(3): 479-489, (2007).
  • [49] Singh, A. K., Pal, P., Yadav, T. P., Gupta, V., Singh, S. P., “Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba”, Materials Chemistry and Physics, 203: 40-48, (2018).
  • [50] Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O., “Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity”, Chemistry International, 6(3): 151-159, (2020).
  • [51] Ramesh, M., Anbuvannan, M., Viruthagiri, G., “Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 864-870, (2015).
  • [52] Nilavukkarasi, M., Vijayakumar, S., Prathipkumar, S., “Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications”, Materials Science for Energy Technologies, 3: 335-343, (2020).
  • [53] Kumar, R., Umar, A., Kumar, G., Nalwa, H. S., “Antimicrobial properties of ZnO nanomaterials: A review”, Ceramics International, 43(5): 3940-3961, (2017).
  • [54] Azizi, S., Mohamad, R., Bahadoran, A., Bayat, S., Rahim, R. A., Ariff, A., Saad, W. Z., “Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica”, Journal of Photochemistry and Photobiology B: Biology, 161:441-449, (2016).
There are 54 citations in total.

Details

Primary Language English
Subjects Analytical Spectrometry
Journal Section Chemistry
Authors

Mahmure Üstün Özgür 0000-0002-6398-3871

Ebru Ortadoğulu 0000-0002-3125-0884

Burak Erdemir 0000-0003-4671-8205

Mine Aydın Kurç 0000-0002-5053-4276

Early Pub Date April 4, 2024
Publication Date September 1, 2024
Published in Issue Year 2024 Volume: 37 Issue: 3

Cite

APA Üstün Özgür, M., Ortadoğulu, E., Erdemir, B., Aydın Kurç, M. (2024). Biogenic Synthesis of Zinc Oxide Nanoparticles with Leaves and Cones Concentrate of Cupressus Arizonica and Assessment of Photocatalytic and Antibacterial Efficiency. Gazi University Journal of Science, 37(3), 1107-1130. https://doi.org/10.35378/gujs.1344908
AMA Üstün Özgür M, Ortadoğulu E, Erdemir B, Aydın Kurç M. Biogenic Synthesis of Zinc Oxide Nanoparticles with Leaves and Cones Concentrate of Cupressus Arizonica and Assessment of Photocatalytic and Antibacterial Efficiency. Gazi University Journal of Science. September 2024;37(3):1107-1130. doi:10.35378/gujs.1344908
Chicago Üstün Özgür, Mahmure, Ebru Ortadoğulu, Burak Erdemir, and Mine Aydın Kurç. “Biogenic Synthesis of Zinc Oxide Nanoparticles With Leaves and Cones Concentrate of Cupressus Arizonica and Assessment of Photocatalytic and Antibacterial Efficiency”. Gazi University Journal of Science 37, no. 3 (September 2024): 1107-30. https://doi.org/10.35378/gujs.1344908.
EndNote Üstün Özgür M, Ortadoğulu E, Erdemir B, Aydın Kurç M (September 1, 2024) Biogenic Synthesis of Zinc Oxide Nanoparticles with Leaves and Cones Concentrate of Cupressus Arizonica and Assessment of Photocatalytic and Antibacterial Efficiency. Gazi University Journal of Science 37 3 1107–1130.
IEEE M. Üstün Özgür, E. Ortadoğulu, B. Erdemir, and M. Aydın Kurç, “Biogenic Synthesis of Zinc Oxide Nanoparticles with Leaves and Cones Concentrate of Cupressus Arizonica and Assessment of Photocatalytic and Antibacterial Efficiency”, Gazi University Journal of Science, vol. 37, no. 3, pp. 1107–1130, 2024, doi: 10.35378/gujs.1344908.
ISNAD Üstün Özgür, Mahmure et al. “Biogenic Synthesis of Zinc Oxide Nanoparticles With Leaves and Cones Concentrate of Cupressus Arizonica and Assessment of Photocatalytic and Antibacterial Efficiency”. Gazi University Journal of Science 37/3 (September 2024), 1107-1130. https://doi.org/10.35378/gujs.1344908.
JAMA Üstün Özgür M, Ortadoğulu E, Erdemir B, Aydın Kurç M. Biogenic Synthesis of Zinc Oxide Nanoparticles with Leaves and Cones Concentrate of Cupressus Arizonica and Assessment of Photocatalytic and Antibacterial Efficiency. Gazi University Journal of Science. 2024;37:1107–1130.
MLA Üstün Özgür, Mahmure et al. “Biogenic Synthesis of Zinc Oxide Nanoparticles With Leaves and Cones Concentrate of Cupressus Arizonica and Assessment of Photocatalytic and Antibacterial Efficiency”. Gazi University Journal of Science, vol. 37, no. 3, 2024, pp. 1107-30, doi:10.35378/gujs.1344908.
Vancouver Üstün Özgür M, Ortadoğulu E, Erdemir B, Aydın Kurç M. Biogenic Synthesis of Zinc Oxide Nanoparticles with Leaves and Cones Concentrate of Cupressus Arizonica and Assessment of Photocatalytic and Antibacterial Efficiency. Gazi University Journal of Science. 2024;37(3):1107-30.