Research Article
BibTex RIS Cite

Fatigue Strength of Drilled Glass Fiber/Epoxy Laminates for Bone Fracture Fixation

Year 2024, Volume: 37 Issue: 3, 1451 - 1459, 01.09.2024
https://doi.org/10.35378/gujs.1357147

Abstract

The metallic bone fracture fixation plates are progressively being replaced by epoxy-reinforced glass fiber laminates (ERGFL) due to a higher strength-to-weight ratio and near neat shape manufacturing. Bone fracture fixation laminates are required to sustain the cyclic load due to the physical movement of the body. Therefore, the characterizations of glass fiber/epoxy laminates with drilled holes are important to study. Despite extensive research on the mechanical characterization of composite laminates, several unique circumstances remain unexplored, such as the characterization of glass fiber/epoxy laminates with drilled holes. The drilling laminates weakened the laminates' mechanical strength and damaged the area around the drilled hole. With Jo drill point designs, the greatest thrust forces (0.56 kN) were observed at 2800 rpm of cutting speed and 0.19 mm/rev of feed rate. Among the various drill points used, the drilled ERGFL laminates with Jo drill had the maximum fatigue life cycle of 87×103.

References

  • [1] Patil, D. S., Bhoomkar, M. M., “Investigation on Mechanical Behaviour of Fiber-Reinforced Advanced Polymer Composite Materials”, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1): 55-62, (2023).
  • [2] Kumar, J., Kumar, V., Singh, I., Rakesh, P. K., “Joining behavior of polymeric composites fabricated using agricultural waste as fillers”, Journal of Adhesion Science and Technology, 35(15), 1652-1663, (2021).
  • [3] Rakesh, P. K., Ranakoti, L., Gupta, M. K., “Mechanical properties of chemically treated cellulosic fiber-reinforced polymer composites”, Cellulose Composites: Processing and Characterization, 15, 151, (2023).
  • [4] Awi, M., Abdullah, A. S., “A Review on Mechanical Properties and Response of Fibre Metal Laminate under Impact Loading (Experiment)”, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1), 111-129, (2023).
  • [5] Ramkumar, J., Aravindan, S., Malhotra, S. K., Krishnamurthy, R., “An enhancement of the machining performance of GFRP by oscillatory assisted drilling”, The International Journal of Advanced Manufacturing Technology, 23, 240-244, (2004).
  • [6] Palanikumar, K., Rubio, J. C., Abrão, A., Esteves, A., Davim, J. P., “Statistical analysis of delamination in drilling glass fiber-reinforced plastics (GFRP)”, Journal of Reinforced Plastics and Composites, 27(15), 1615-1623, (2008).
  • [7] Yadav, N. K., Rajput, N. S., Gupta, M. K., "Investigation of the mechanical and wear properties of epoxy resin composite (ERCs) made with nanoparticle TiO2 and cotton fiber reinforcement”, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1), 63-77, (2023).
  • [8] Ranakoti, L., Raturi, A., Gupta, M. K., “Influence of Natural Jatropha Fruit Shell on the Mechanical Properties of Glass Fiber Reinforced Polymer Composites”, IJARET, 11(5), 1187-1192, (2020).
  • [9] Ranakoti, L., Rakesh, P. K., Gangil, B., “Effect of Tasar silk waste on the mechanical properties of Jute/Grewia optiva fibers reinforced epoxy laminates”, Journal of Natural Fibers, 19(15), 10462-10474, (2022).
  • [10] Ranakoti, L., Rakesh, P. K., “Physio-mechanical characterization of tasar silk waste/jute fiber hybrid composite”, Composites Communications, 22, 100526, (2020).
  • [11] Chaturvedi, A., Ranakoti, L., Rakesh, P. K., Mishra, N. K., “Experimental investigations on mechanical properties of walnut shell and pine needle ash polylactic acid biocomposites”, Composites Theory and Practice, 21, (2021).
  • [12] Ranakoti, L., Gupta, M. K., Rakesh, P. K., “Silk and silk-based composites: opportunities and challenges”, Processing of Green Composites, 91-106, (2019).
  • [13] Ranakoti, L., Rakesh, P. K., Gangil, B., “Role of wood flour on physical and mechanical properties in polymer matrix composites-a critical review”, Revue des Composites et des Matériaux Avancés-Journal of Composite and Advanced Materials, 31(2), 81-92, (2021).
  • [14] Wibowo, A. H., Al Arraf, H., Masykur, A., Rahmawati, F., Firdaus, M., Pasila, F., Nasori, N., “Composite of Polyaniline/Reduced Graphene Oxide with The Single-, Bi-and Tri-metal Oxides Modification and the Effect on the Capacitance Properties”, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1), 85-93, (2023).
  • [15] Gupta, M. K., Singhal, V., Rajput, N. S., “Applications and Challenges of Carbon-fibres reinforced Composites: A Review”, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 9(3), 682-693, (2022). DOI: https://doi.org/10.5109/4843099
  • [16] Gupta, M. K., Singhal, V., “Review on materials for making lightweight vehicles”, Materials Today: Proceedings, 56, 868-872, (2022).
  • [17] Gangil, B., Gupta, M. K., Ranakoti, L., Singh, T., “Thermal and Thermo-Mechanical Analysis of Vinyl-Ester-Carbon/CBPD Particulate-Filled FGMS and Their Homogenous Composites”, In Advances in Engineering Design: Select Proceedings of ICOIED 2020, 159-167, Springer Singapore, (2021).
  • [18] Kabiri, A., Liaghat, G., Alavi, F., “Biomechanical evaluation of glass fiber/polypropylene composite bone fracture fixation plates: experimental and numerical analysis”, Computers in Biology and Medicine, 132, 104303, (2021).
  • [19] Faria, P. E., Campos Rubio, J. C., Abrao, A. M., Davim, J. P., “Dimensional and geometric deviations induced by drilling of polymeric composite”, Journal of Reinforced Plastics and Composites, 28(19), 2353-2363, (2009).
  • [20] Mohan, N. S., Ramachandra, A., Kulkarni, S. M., “Machining of fiber-reinforced thermoplastics: influence of feed and drill size on thrust force and torque during drilling”, Journal of Reinforced Plastics and Composites, 24(12), 1247-1257, (2005).
  • [21] Verma, S., Ranakoti, L., Gangil, B., Gupta, M. K., “Drilling and Repair of the Composite Sandwich Panels”. Sandwich Composites, 261-275, CRC Press., (2022).
  • [22] Wang, X., Wang, L. J., Tao, J. P., “Investigation on thrust in vibration drilling of fiber-reinforced plastics”, Journal of Materials Processing Technology, 148(2), 239-244, (2004).
  • [23] Xiong, J. J., Li, H. Y., Zeng, B. Y., “A strain-based residual strength model of carbon fibre/epoxy composites based on CAI and fatigue residual strength concepts”, Composite structures, 85(1), 29-42, (2008).
  • [24] Xiong, J. J., Shenoi, R. A., “A two-stage theory on fatigue damage and life prediction of composites. Composites Science and Technology”, 64(9), 1331-1343, (2004).
  • [25] Bourchak, M., Farrow, I. R., Bond, I. P., Rowland, C. W., Menan, F., “Acoustic emission energy as a fatigue damage parameter for CFRP composites”, International Journal of Fatigue, 29(3), 457-470, (2007).
  • [26] Singh, I., Bhatnagar, N., “Drilling of uni-directional glass fiber reinforced plastic (UD-GFRP) composite laminates”, The International Journal of Advanced Manufacturing Technology, 27, 870-876, (2006).
  • [27] Afaghi-Khatibi, A., Ye, L., Mai, Y. W., “An experimental study of the influence of fibre–matrix interface on fatigue tensile strength of notched composite laminates”, Composites Part B: Engineering, 32(4), 371-377, (2001).
  • [28] Khashaba, U. A., Selmy, A. I., El-Sonbaty, I. A., Megahed, M., “Behavior of notched and unnotched [0/±30/±60/90] s GFR/Epoxy composites under static and fatigue loads”, Composite structures, 81(4), 606-613, (2007).
  • [29] Zhang, L., Liu, Z., Wu, D., Zhang, H., Zhu, P., “Fast and synergetic fatigue life prediction of short fiber reinforced polymer composites from monotonic and cyclic loading behavior”, Composites Science and Technology, 241, 110121, (2023).
  • [30] Najd, J., W. Harizi, Z. Aboura, E. Zappino, E. Carrera,Rapid estimation of the fatigue limit of Smart Polymer-Matrix Composites (PMC) using the self-heating tests, Composite Structures, 282, 115039, (2022).
  • [31] Koloor, S.S.R., Abdullah, M.A., Tamin, M.R., Ayatollahi, M.R., “Fatigue damage of cohesive interfaces in fiber-reinforced polymer composite laminates”, Composites Science and Technology,183, 2019, 107779, (2019). DOI: https://doi.org/10.1016/j.compscitech.
  • [32] Rakesh P.K, I. Singh, D. Kumar, “Failure Prediction in Glass Fiber Reinforced Plastics Laminates with Drilled Hole Under Uni-Axial Loading”, Materials and Design, 31(6), 3002-3007, (2010).
  • [33] Rakesh P.K, Singh I, Kumar D. “Compressive Behavior of Glass Fiber Reinforced Plastic Laminates with Drilled Hole”, Advanced Materials Research, 410, 349-352, (2012).
  • [34] Rakesh P.K, Singh I, Kumar D. “Flexural Behavior of Glass Fiber Reinforced Plastic Laminates with Drilled Hole”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 226 (2), 149-158 (2012).
Year 2024, Volume: 37 Issue: 3, 1451 - 1459, 01.09.2024
https://doi.org/10.35378/gujs.1357147

Abstract

References

  • [1] Patil, D. S., Bhoomkar, M. M., “Investigation on Mechanical Behaviour of Fiber-Reinforced Advanced Polymer Composite Materials”, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1): 55-62, (2023).
  • [2] Kumar, J., Kumar, V., Singh, I., Rakesh, P. K., “Joining behavior of polymeric composites fabricated using agricultural waste as fillers”, Journal of Adhesion Science and Technology, 35(15), 1652-1663, (2021).
  • [3] Rakesh, P. K., Ranakoti, L., Gupta, M. K., “Mechanical properties of chemically treated cellulosic fiber-reinforced polymer composites”, Cellulose Composites: Processing and Characterization, 15, 151, (2023).
  • [4] Awi, M., Abdullah, A. S., “A Review on Mechanical Properties and Response of Fibre Metal Laminate under Impact Loading (Experiment)”, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1), 111-129, (2023).
  • [5] Ramkumar, J., Aravindan, S., Malhotra, S. K., Krishnamurthy, R., “An enhancement of the machining performance of GFRP by oscillatory assisted drilling”, The International Journal of Advanced Manufacturing Technology, 23, 240-244, (2004).
  • [6] Palanikumar, K., Rubio, J. C., Abrão, A., Esteves, A., Davim, J. P., “Statistical analysis of delamination in drilling glass fiber-reinforced plastics (GFRP)”, Journal of Reinforced Plastics and Composites, 27(15), 1615-1623, (2008).
  • [7] Yadav, N. K., Rajput, N. S., Gupta, M. K., "Investigation of the mechanical and wear properties of epoxy resin composite (ERCs) made with nanoparticle TiO2 and cotton fiber reinforcement”, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1), 63-77, (2023).
  • [8] Ranakoti, L., Raturi, A., Gupta, M. K., “Influence of Natural Jatropha Fruit Shell on the Mechanical Properties of Glass Fiber Reinforced Polymer Composites”, IJARET, 11(5), 1187-1192, (2020).
  • [9] Ranakoti, L., Rakesh, P. K., Gangil, B., “Effect of Tasar silk waste on the mechanical properties of Jute/Grewia optiva fibers reinforced epoxy laminates”, Journal of Natural Fibers, 19(15), 10462-10474, (2022).
  • [10] Ranakoti, L., Rakesh, P. K., “Physio-mechanical characterization of tasar silk waste/jute fiber hybrid composite”, Composites Communications, 22, 100526, (2020).
  • [11] Chaturvedi, A., Ranakoti, L., Rakesh, P. K., Mishra, N. K., “Experimental investigations on mechanical properties of walnut shell and pine needle ash polylactic acid biocomposites”, Composites Theory and Practice, 21, (2021).
  • [12] Ranakoti, L., Gupta, M. K., Rakesh, P. K., “Silk and silk-based composites: opportunities and challenges”, Processing of Green Composites, 91-106, (2019).
  • [13] Ranakoti, L., Rakesh, P. K., Gangil, B., “Role of wood flour on physical and mechanical properties in polymer matrix composites-a critical review”, Revue des Composites et des Matériaux Avancés-Journal of Composite and Advanced Materials, 31(2), 81-92, (2021).
  • [14] Wibowo, A. H., Al Arraf, H., Masykur, A., Rahmawati, F., Firdaus, M., Pasila, F., Nasori, N., “Composite of Polyaniline/Reduced Graphene Oxide with The Single-, Bi-and Tri-metal Oxides Modification and the Effect on the Capacitance Properties”, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1), 85-93, (2023).
  • [15] Gupta, M. K., Singhal, V., Rajput, N. S., “Applications and Challenges of Carbon-fibres reinforced Composites: A Review”, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 9(3), 682-693, (2022). DOI: https://doi.org/10.5109/4843099
  • [16] Gupta, M. K., Singhal, V., “Review on materials for making lightweight vehicles”, Materials Today: Proceedings, 56, 868-872, (2022).
  • [17] Gangil, B., Gupta, M. K., Ranakoti, L., Singh, T., “Thermal and Thermo-Mechanical Analysis of Vinyl-Ester-Carbon/CBPD Particulate-Filled FGMS and Their Homogenous Composites”, In Advances in Engineering Design: Select Proceedings of ICOIED 2020, 159-167, Springer Singapore, (2021).
  • [18] Kabiri, A., Liaghat, G., Alavi, F., “Biomechanical evaluation of glass fiber/polypropylene composite bone fracture fixation plates: experimental and numerical analysis”, Computers in Biology and Medicine, 132, 104303, (2021).
  • [19] Faria, P. E., Campos Rubio, J. C., Abrao, A. M., Davim, J. P., “Dimensional and geometric deviations induced by drilling of polymeric composite”, Journal of Reinforced Plastics and Composites, 28(19), 2353-2363, (2009).
  • [20] Mohan, N. S., Ramachandra, A., Kulkarni, S. M., “Machining of fiber-reinforced thermoplastics: influence of feed and drill size on thrust force and torque during drilling”, Journal of Reinforced Plastics and Composites, 24(12), 1247-1257, (2005).
  • [21] Verma, S., Ranakoti, L., Gangil, B., Gupta, M. K., “Drilling and Repair of the Composite Sandwich Panels”. Sandwich Composites, 261-275, CRC Press., (2022).
  • [22] Wang, X., Wang, L. J., Tao, J. P., “Investigation on thrust in vibration drilling of fiber-reinforced plastics”, Journal of Materials Processing Technology, 148(2), 239-244, (2004).
  • [23] Xiong, J. J., Li, H. Y., Zeng, B. Y., “A strain-based residual strength model of carbon fibre/epoxy composites based on CAI and fatigue residual strength concepts”, Composite structures, 85(1), 29-42, (2008).
  • [24] Xiong, J. J., Shenoi, R. A., “A two-stage theory on fatigue damage and life prediction of composites. Composites Science and Technology”, 64(9), 1331-1343, (2004).
  • [25] Bourchak, M., Farrow, I. R., Bond, I. P., Rowland, C. W., Menan, F., “Acoustic emission energy as a fatigue damage parameter for CFRP composites”, International Journal of Fatigue, 29(3), 457-470, (2007).
  • [26] Singh, I., Bhatnagar, N., “Drilling of uni-directional glass fiber reinforced plastic (UD-GFRP) composite laminates”, The International Journal of Advanced Manufacturing Technology, 27, 870-876, (2006).
  • [27] Afaghi-Khatibi, A., Ye, L., Mai, Y. W., “An experimental study of the influence of fibre–matrix interface on fatigue tensile strength of notched composite laminates”, Composites Part B: Engineering, 32(4), 371-377, (2001).
  • [28] Khashaba, U. A., Selmy, A. I., El-Sonbaty, I. A., Megahed, M., “Behavior of notched and unnotched [0/±30/±60/90] s GFR/Epoxy composites under static and fatigue loads”, Composite structures, 81(4), 606-613, (2007).
  • [29] Zhang, L., Liu, Z., Wu, D., Zhang, H., Zhu, P., “Fast and synergetic fatigue life prediction of short fiber reinforced polymer composites from monotonic and cyclic loading behavior”, Composites Science and Technology, 241, 110121, (2023).
  • [30] Najd, J., W. Harizi, Z. Aboura, E. Zappino, E. Carrera,Rapid estimation of the fatigue limit of Smart Polymer-Matrix Composites (PMC) using the self-heating tests, Composite Structures, 282, 115039, (2022).
  • [31] Koloor, S.S.R., Abdullah, M.A., Tamin, M.R., Ayatollahi, M.R., “Fatigue damage of cohesive interfaces in fiber-reinforced polymer composite laminates”, Composites Science and Technology,183, 2019, 107779, (2019). DOI: https://doi.org/10.1016/j.compscitech.
  • [32] Rakesh P.K, I. Singh, D. Kumar, “Failure Prediction in Glass Fiber Reinforced Plastics Laminates with Drilled Hole Under Uni-Axial Loading”, Materials and Design, 31(6), 3002-3007, (2010).
  • [33] Rakesh P.K, Singh I, Kumar D. “Compressive Behavior of Glass Fiber Reinforced Plastic Laminates with Drilled Hole”, Advanced Materials Research, 410, 349-352, (2012).
  • [34] Rakesh P.K, Singh I, Kumar D. “Flexural Behavior of Glass Fiber Reinforced Plastic Laminates with Drilled Hole”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 226 (2), 149-158 (2012).
There are 34 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Mechanical Engineering (Other)
Journal Section Mechanical Engineering
Authors

Pawan Rakesh 0000-0003-1620-9573

Manoj Gupta 0000-0002-3547-800X

Inderdeep Singh 0000-0003-4170-1869

Nitesh Singh Rajput 0000-0002-2394-5205

Jıtendra Mahto 0009-0008-1265-0613

Early Pub Date May 23, 2024
Publication Date September 1, 2024
Published in Issue Year 2024 Volume: 37 Issue: 3

Cite

APA Rakesh, P., Gupta, M., Singh, I., Rajput, N. S., et al. (2024). Fatigue Strength of Drilled Glass Fiber/Epoxy Laminates for Bone Fracture Fixation. Gazi University Journal of Science, 37(3), 1451-1459. https://doi.org/10.35378/gujs.1357147
AMA Rakesh P, Gupta M, Singh I, Rajput NS, Mahto J. Fatigue Strength of Drilled Glass Fiber/Epoxy Laminates for Bone Fracture Fixation. Gazi University Journal of Science. September 2024;37(3):1451-1459. doi:10.35378/gujs.1357147
Chicago Rakesh, Pawan, Manoj Gupta, Inderdeep Singh, Nitesh Singh Rajput, and Jıtendra Mahto. “Fatigue Strength of Drilled Glass Fiber/Epoxy Laminates for Bone Fracture Fixation”. Gazi University Journal of Science 37, no. 3 (September 2024): 1451-59. https://doi.org/10.35378/gujs.1357147.
EndNote Rakesh P, Gupta M, Singh I, Rajput NS, Mahto J (September 1, 2024) Fatigue Strength of Drilled Glass Fiber/Epoxy Laminates for Bone Fracture Fixation. Gazi University Journal of Science 37 3 1451–1459.
IEEE P. Rakesh, M. Gupta, I. Singh, N. S. Rajput, and J. Mahto, “Fatigue Strength of Drilled Glass Fiber/Epoxy Laminates for Bone Fracture Fixation”, Gazi University Journal of Science, vol. 37, no. 3, pp. 1451–1459, 2024, doi: 10.35378/gujs.1357147.
ISNAD Rakesh, Pawan et al. “Fatigue Strength of Drilled Glass Fiber/Epoxy Laminates for Bone Fracture Fixation”. Gazi University Journal of Science 37/3 (September 2024), 1451-1459. https://doi.org/10.35378/gujs.1357147.
JAMA Rakesh P, Gupta M, Singh I, Rajput NS, Mahto J. Fatigue Strength of Drilled Glass Fiber/Epoxy Laminates for Bone Fracture Fixation. Gazi University Journal of Science. 2024;37:1451–1459.
MLA Rakesh, Pawan et al. “Fatigue Strength of Drilled Glass Fiber/Epoxy Laminates for Bone Fracture Fixation”. Gazi University Journal of Science, vol. 37, no. 3, 2024, pp. 1451-9, doi:10.35378/gujs.1357147.
Vancouver Rakesh P, Gupta M, Singh I, Rajput NS, Mahto J. Fatigue Strength of Drilled Glass Fiber/Epoxy Laminates for Bone Fracture Fixation. Gazi University Journal of Science. 2024;37(3):1451-9.