Effects of Mechanical Milling and FAST on Mg Powders: Microstructural Analysis and Mechanical Properties
Year 2024,
Volume: 37 Issue: 3, 1436 - 1449, 01.09.2024
Yasemin Yahşi
,
Rasim İpek
Abstract
This study investigates the sintering mechanism of commercially pure Magnesium (Mg) using the Field Assisted Sintering Technique (FAST). Powder morphologies are in a vast variety of spherical to flake, as well as nano to fine grain as in powder size and mechanically milled (MM) between 0-108 hours. The MM'ed Mg particles were sintered by FAST with at 350-425℃ for 5-20min. Relative densities (93-99%) and compressive strength up to 369MPa were obtained from FAST’ed Mg samples depending on MM durations and particle geometries which significantly influenced the sintering mechanism. SEM and XRD analysis identified four distinct bonding and sintering mechanisms influenced by particle geometry, residual stress, and microstructure developed through mechanical milling. The combination of mechanical milling and FAST exhibited significant effects on the microstructural and mechanical properties of Mg powders, with the Mg36 sample displaying promising strength and hardness.
References
- [1] Groza, J.R., Garcia, M., Schneider, J.A., “Surface effects in field-assisted sintering”, Journal of Materials Research, 16(1): 286-292, (2001).
- [2] Olevsky, E. A., Dudina, D.V., “Field-assisted sintering: Science and applications”, Springer International Publishing, (2018).
- [3] Weston, N. S., Thomas, B., Jackson, M., “Processing metal powders via field assisted sintering technology (FAST): a critical review”, Materials Science and Technology (United Kingdom), 35(11): 1306–1328, (2019).
- [4] Shen, Z., Johnsson, M., Zhao, Z., Nygren, M., “Spark Plasma Sintering of Alumina”, Journal of the American Ceramic Society, 85(8): 1921-1927, (2002).
- [5] Guillon, O., Gonzalez-Julian, J., Dargatz, B., Kessel, T., Schierning, G., Räthel, J., Herrmann, M., “Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments”, Advanced Engineering Materials, 16(7): 830–849, (2014).
- [6] Tokita, M., “Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization”, Ceramics, 4(2): 160–198, (2021).
- [7] Olevsky, E. A., Kandukuri, S., Froyen, L., “Consolidation enhancement in spark-plasma sintering: Impact of high heating rates”, Journal of Applied Physics, 102(11), (2007).
- [8] Li, X. Y., Zhang, Z. H., Cheng, X. W., Huo, G. J., Zhang, S. Z., Song, Q., “the development and application of spark plasma sintering technique in advanced metal structure materials: A review”, Powder Metallurgy and Metal Ceramics, 60(7–8): 410–438, (2021).
- [9] Murty, B. S., Ranganathan, S. J. M. R., "Novel materials synthesis by mechanical alloying/milling", International Materials Reviews, 43(3): 101-141, (1998).
- [10] Schwarz, R. B., Koch, C. C., “Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics”, Applied Physics Letters, 49(3): 146–148, (1986).
- [11] Suryanarayana, C., “Mechanical alloying and milling”, Progress in Materials Science, 46(1-2): 1-184, (2001).
- [12] El-Eskandarany, M. S., “Controlling the powder milling process”, In: Mechanical Alloying, 48–83, (2015).
- [13] Hwang, S., Nishimura, C., McCormick, P.G., “Mechanical milling of magnesium powder”, Materials Science and Engineering A, 318: 22-33, (2001).
- [14] Rashad, M., Pan, F., Asif, M., “Room temperature mechanical properties of Mg-Cu-Al alloys synthesized using powder metallurgy method”, Materials Science and Engineering A, 644: 129–136, (2015).
- [15] Samal, C. P., Parihar, J. S., Chaira, D., “The effect of milling and sintering techniques on mechanical properties of Cu-graphite metal matrix composite prepared by powder metallurgy route”, Journal of Alloys and Compounds, 569: 95–101, (2013).
- [16] Yahşi, Y., İpek, R., “Effect of ball milling time on microstructural properties of Mg/MgO”, Hacettepe Journal of Biology and Chemistry, 50(3): 269 – 274, (2022).
- [17] Friedrich, H. E., Mordike, B. L., “Technology of Magnesium and Magnesium Alloys”, In: Magnesium Technology, 219-430, 2006.
- [18] Sealy, M. P., Guo, Y. B., Liu, J. F., Li, C., “Pulsed laser cutting of Magnesium-Calcium for biodegradable stents”, in Procedia CIRP, 42: 67–72, (2016).
- [19] Barnett, M. R., “Forming of Magnesium and its alloys”, in Fundamentals of Magnesium Alloy Metallurgy: A volume in Woodhead Publishing Series in Metals and Surface Engineering, Elsevier Inc., 197–231, 2013.
- [20] Zhuang, H., Han, Y., Feng, A., “Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds”, Materials Science and Engineering C, 28(8): 1462–1466, (2008).
- [21] Yamashita, A., Horita, Z., Langdon, T. G., “Improving the mechanical properties of Magnesium and a Magnesium alloy through severe plastic deformation”, Transactions of Nonferrous Metals Society of China, 18(2): 309-314, 2001.
- [22] Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., “Response Surface Methodology”, Third Edition, John Wiley & Sons, New York, (2009).
- [23] Ferreira, S. L. C., Bruns, R. E., Ferreira, H.S., Matos, G. D., David, J. M., Brandão, G.C., da Silva, E.G.P., Portugal, L. A., dos Reis, P. S., Souza, A.S., dos Santos, W.N.L., “Box-Behnken design: An alternative for the optimization of analytical methods”, Analytica Chimica Acta, 597(2): 179–186, (2007).
- [24] Rios, J., Restrepo, A., Zuleta, A., Bolívar, F., Castaño, J., Correa, E., Echeverria, F., “Effect of Ball Size on the Microstructure and Morphology of Mg Powders Processed by High-Energy Ball Milling”, Metals, 11(10): 1621, (2021).
- [25] Fultz, B., Howe, J. M., Fultz, B., Howe, J. M., “Diffraction and the X-ray powder diffractometer”, Transmission Electron Microscopy and Diffractometry of Materials, 1-61, (2001).
- [26] Wang, F., Zhou, Q., Li, X. Z., Yoo, Y., Nastasi, M., Cui, B., “Electron microscopy observation of electric field-assisted sintering of stainless steel nanoparticles”, Journal of Materials Science, 56(3): 2584–2596, (2021).
Year 2024,
Volume: 37 Issue: 3, 1436 - 1449, 01.09.2024
Yasemin Yahşi
,
Rasim İpek
References
- [1] Groza, J.R., Garcia, M., Schneider, J.A., “Surface effects in field-assisted sintering”, Journal of Materials Research, 16(1): 286-292, (2001).
- [2] Olevsky, E. A., Dudina, D.V., “Field-assisted sintering: Science and applications”, Springer International Publishing, (2018).
- [3] Weston, N. S., Thomas, B., Jackson, M., “Processing metal powders via field assisted sintering technology (FAST): a critical review”, Materials Science and Technology (United Kingdom), 35(11): 1306–1328, (2019).
- [4] Shen, Z., Johnsson, M., Zhao, Z., Nygren, M., “Spark Plasma Sintering of Alumina”, Journal of the American Ceramic Society, 85(8): 1921-1927, (2002).
- [5] Guillon, O., Gonzalez-Julian, J., Dargatz, B., Kessel, T., Schierning, G., Räthel, J., Herrmann, M., “Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments”, Advanced Engineering Materials, 16(7): 830–849, (2014).
- [6] Tokita, M., “Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization”, Ceramics, 4(2): 160–198, (2021).
- [7] Olevsky, E. A., Kandukuri, S., Froyen, L., “Consolidation enhancement in spark-plasma sintering: Impact of high heating rates”, Journal of Applied Physics, 102(11), (2007).
- [8] Li, X. Y., Zhang, Z. H., Cheng, X. W., Huo, G. J., Zhang, S. Z., Song, Q., “the development and application of spark plasma sintering technique in advanced metal structure materials: A review”, Powder Metallurgy and Metal Ceramics, 60(7–8): 410–438, (2021).
- [9] Murty, B. S., Ranganathan, S. J. M. R., "Novel materials synthesis by mechanical alloying/milling", International Materials Reviews, 43(3): 101-141, (1998).
- [10] Schwarz, R. B., Koch, C. C., “Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics”, Applied Physics Letters, 49(3): 146–148, (1986).
- [11] Suryanarayana, C., “Mechanical alloying and milling”, Progress in Materials Science, 46(1-2): 1-184, (2001).
- [12] El-Eskandarany, M. S., “Controlling the powder milling process”, In: Mechanical Alloying, 48–83, (2015).
- [13] Hwang, S., Nishimura, C., McCormick, P.G., “Mechanical milling of magnesium powder”, Materials Science and Engineering A, 318: 22-33, (2001).
- [14] Rashad, M., Pan, F., Asif, M., “Room temperature mechanical properties of Mg-Cu-Al alloys synthesized using powder metallurgy method”, Materials Science and Engineering A, 644: 129–136, (2015).
- [15] Samal, C. P., Parihar, J. S., Chaira, D., “The effect of milling and sintering techniques on mechanical properties of Cu-graphite metal matrix composite prepared by powder metallurgy route”, Journal of Alloys and Compounds, 569: 95–101, (2013).
- [16] Yahşi, Y., İpek, R., “Effect of ball milling time on microstructural properties of Mg/MgO”, Hacettepe Journal of Biology and Chemistry, 50(3): 269 – 274, (2022).
- [17] Friedrich, H. E., Mordike, B. L., “Technology of Magnesium and Magnesium Alloys”, In: Magnesium Technology, 219-430, 2006.
- [18] Sealy, M. P., Guo, Y. B., Liu, J. F., Li, C., “Pulsed laser cutting of Magnesium-Calcium for biodegradable stents”, in Procedia CIRP, 42: 67–72, (2016).
- [19] Barnett, M. R., “Forming of Magnesium and its alloys”, in Fundamentals of Magnesium Alloy Metallurgy: A volume in Woodhead Publishing Series in Metals and Surface Engineering, Elsevier Inc., 197–231, 2013.
- [20] Zhuang, H., Han, Y., Feng, A., “Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds”, Materials Science and Engineering C, 28(8): 1462–1466, (2008).
- [21] Yamashita, A., Horita, Z., Langdon, T. G., “Improving the mechanical properties of Magnesium and a Magnesium alloy through severe plastic deformation”, Transactions of Nonferrous Metals Society of China, 18(2): 309-314, 2001.
- [22] Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., “Response Surface Methodology”, Third Edition, John Wiley & Sons, New York, (2009).
- [23] Ferreira, S. L. C., Bruns, R. E., Ferreira, H.S., Matos, G. D., David, J. M., Brandão, G.C., da Silva, E.G.P., Portugal, L. A., dos Reis, P. S., Souza, A.S., dos Santos, W.N.L., “Box-Behnken design: An alternative for the optimization of analytical methods”, Analytica Chimica Acta, 597(2): 179–186, (2007).
- [24] Rios, J., Restrepo, A., Zuleta, A., Bolívar, F., Castaño, J., Correa, E., Echeverria, F., “Effect of Ball Size on the Microstructure and Morphology of Mg Powders Processed by High-Energy Ball Milling”, Metals, 11(10): 1621, (2021).
- [25] Fultz, B., Howe, J. M., Fultz, B., Howe, J. M., “Diffraction and the X-ray powder diffractometer”, Transmission Electron Microscopy and Diffractometry of Materials, 1-61, (2001).
- [26] Wang, F., Zhou, Q., Li, X. Z., Yoo, Y., Nastasi, M., Cui, B., “Electron microscopy observation of electric field-assisted sintering of stainless steel nanoparticles”, Journal of Materials Science, 56(3): 2584–2596, (2021).