Research Article
BibTex RIS Cite
Year 2022, , 41 - 48, 30.03.2022
https://doi.org/10.54287/gujsa.1066230

Abstract

References

  • Alam, K., Mitrofanov, A. V., & Silberschmidt, V. V. (2009). Finite element analysis of forces of plane cutting of cortical bone. Comput. Mater. Sci., 46(3), 738-743. doi:10.1016/j.commatsci.2009.04.035
  • Augustin, G., Davila, S., Mihoci, K., Udiljak, T., Vedrina, D. S., & Antabak, A. (2008). Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg, 128(1), 71-77. doi:10.1007/s00402-007-0427-3
  • Blaise Pascal, F. N., Malisawa, A., Barratt-Due, A., Namboya, F., & Pollach, G. (2021). General anaesthesia related mortality in a limited resource settings region: a retrospective study in two teaching hospitals of Butembo. BMC Anesthesiology, 21(1), 60. doi:10.1186/s12871-021-01280-2
  • Cottrell, J. E. (2008). We Care, Therefore We Are: Anesthesia-related Morbidity and Mortality: The 46th Rovenstine Lecture. Anesthesiology, 109(3), 377-388. doi:10.1097/ALN.0b013e31818344da
  • Çömez, M. S., & Demirkıran, H. (2021). Intraoperative Anesthesia-Related Mortality: A 10-Year Survey in a Tertiary Teaching Hospital. Van Med J, 28(2), 280-287. doi:10.5505/vtd.2021.02259
  • Eriksson, A. R., Albrektsson, T., & Albrektsson, B. (1984). Heat caused by drilling cortical bone. Temperature measured in vivo in patients and animals. Acta. Orthop. Scand., 55(6), 629-631. doi:10.3109/17453678408992410
  • Gok, K., Gok, A., & Kisioglu, Y. (2014a). Optimization of processing parameters of a developed new driller system for orthopedic surgery applications using Taguchi method. Int J Adv Manuf Technol., 76, 1437-1448. doi:10.1007/s00170-014-6327-0
  • Gok, A., Inal, S., Taspinar, F., Gulbandilar, E., & Gok, K. (2014b). Fatigue behaviors of different materials for schanz screws in femoral fracture model using finite element analysis. Optoelectronics and Advanced Materials-Rapid Communications, 8(5-6), 576-580.
  • Gok, A. (2015). A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA. Measurement, 70, 100-109. doi:10.1016/j.measurement.2015.03.037
  • Gok, K., Buluc, L., Muezzinoglu, U. S., & Kisioglu, Y. (2015a). Development of a new driller system to prevent the osteonecrosis in orthopedic surgery applications. J Braz. Soc. Mech. Sci. Eng., 37, 549-558. doi:10.1007/s40430-014-0186-3
  • Gok, A., Gok, K., & Bilgin, M. B. (2015b). Three-dimensional finite element model of the drilling process used for fixation of Salter–Harris type-3 fractures by using a K-wire. Mech. Sci., 6(2), 147-154. doi:10.5194/ms-6-147-2015
  • Hillery, M. T., & Shuaib, I. (1999). Temperature effects in the drilling of human and bovine bone. Journal of Materials Processing Technology, 92-93, 302-308. doi:10.1016/S0924-0136(99)00155-7
  • Inal, S., Gok, K., Gok, A., Pinar, A.M., & Inal, C. (2019). Comparison of Biomechanical Effects of Different Configurations of Kirschner Wires on the Epiphyseal Plate and Stability in a Salter-Harris Type 2 Distal Femoral Fracture Model. J Am Podiatr Med Assoc, 109(1), 13-21. doi:10.7547/16-112
  • MatWeb (2022). Searchable Database of Material Properties, http://www.matweb.com/
  • McElhaney, J., & Byars, E. F. (1965). Dynamic response of biological materials. American Society of Mechanical Engineers, New York.
  • Pignaton, W., Braz, J. R. C., Kusano, P. S., Módolo, M. P., de Carvalho, L. R., Braz, M. G., & Braz, L. G. (2016). Perioperative and Anesthesia-Related Mortality: An 8-Year Observational Survey From a Tertiary Teaching Hospital. Medicine, 95(2), e2208. doi:10.1097/md.0000000000002208
  • Sezek, S., Aksakal, B., & Karaca, F. (2012). Influence of drill parameters on bone temperature and necrosis: A FEM modelling and in vitro experiments. Comput. Mater. Sci., 60, 13-18. doi:10.1016/j.commatsci.2012.03.012
  • Stephenson, D. A., & Agapiou, J. S. (2018). Metal Cutting Theory and Practice. CRC Press.
  • Wu, A.-M., Bisignano, C., James, S. L., Abady, G. G., Abedi, A., Abu-Gharbieh, E., Alhassan, R. K., Alipour, V., Arabloo, J., Asaad, M., Asmare, W. N., Awedew, A. F., Banach, M., Banerjee, S. K., Bijani, A., Birhanu, T. T. M., Bolla, S. R., Cámera, L. A., Chang, J.-C., … Vos, T. (2021). Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. The Lancet Healthy Longevity, 2(9), e580-e592. doi:10.1016/s2666-7568(21)00172-0
  • Yuan-Kun, T., Li-Wen, C., Ching-Chieh, H., Yung-Chuan, C., Hsun-Heng, T., & Li-Chiang, L. (2008, May 16-18). Finite element simulation of drill bit and bone thermal contact during drilling. In: Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2008), Shanghai, China, (pp. 1268-1271). doi:10.1109/ICBBE.2008.645
  • Yuan-Kun, T., You-Yao, H., & Yung-Chuan, C. (2009). Finite element modeling of kirschner pin and bone thermalcontact during drilling. Life Sci. J., 6(4), 23-27.
  • Yuan-Kun, T., Wei-Hua, L., Li-Wen, C., Ji-Sih, C., & Yung-Chuan, C. (2011, May 10-12). The effects of drilling parameters on bone temperatures: a finite element simulation. In: Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2011), Wuhan, China, (pp. 1-4). doi:10.1109/icbbe.2011.5780448

Design and Finite Element Analysis of a New Kirschner Wire for Fixing Bone Fractures in Orthopedic Surgery

Year 2022, , 41 - 48, 30.03.2022
https://doi.org/10.54287/gujsa.1066230

Abstract

In this study, a new Kirschner wire (K-wire) design was performed to fix bone fractures in orthopedic surgery. The numerical analyses were completed based on the finite element method (FEM), using Deform-3D software. In this kind of numerical analyses using the FEM, friction, material model, the load and boundary conditions must be defined correctly. It has been seen that the new design is more advantageous in terms of implant failure or stability of fracture fixation. In addition, a good compatibility was found between the experimental results and the finite element analysis (FEA) results. This confirmed the accuracy of the finite element model. Therefore, this finite element model can be used reliably in drilling processes. We believe that with the use of new design investigated may have the role on the patients taking away from recurrent anesthesia and orthopaedic surgical risk.

References

  • Alam, K., Mitrofanov, A. V., & Silberschmidt, V. V. (2009). Finite element analysis of forces of plane cutting of cortical bone. Comput. Mater. Sci., 46(3), 738-743. doi:10.1016/j.commatsci.2009.04.035
  • Augustin, G., Davila, S., Mihoci, K., Udiljak, T., Vedrina, D. S., & Antabak, A. (2008). Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg, 128(1), 71-77. doi:10.1007/s00402-007-0427-3
  • Blaise Pascal, F. N., Malisawa, A., Barratt-Due, A., Namboya, F., & Pollach, G. (2021). General anaesthesia related mortality in a limited resource settings region: a retrospective study in two teaching hospitals of Butembo. BMC Anesthesiology, 21(1), 60. doi:10.1186/s12871-021-01280-2
  • Cottrell, J. E. (2008). We Care, Therefore We Are: Anesthesia-related Morbidity and Mortality: The 46th Rovenstine Lecture. Anesthesiology, 109(3), 377-388. doi:10.1097/ALN.0b013e31818344da
  • Çömez, M. S., & Demirkıran, H. (2021). Intraoperative Anesthesia-Related Mortality: A 10-Year Survey in a Tertiary Teaching Hospital. Van Med J, 28(2), 280-287. doi:10.5505/vtd.2021.02259
  • Eriksson, A. R., Albrektsson, T., & Albrektsson, B. (1984). Heat caused by drilling cortical bone. Temperature measured in vivo in patients and animals. Acta. Orthop. Scand., 55(6), 629-631. doi:10.3109/17453678408992410
  • Gok, K., Gok, A., & Kisioglu, Y. (2014a). Optimization of processing parameters of a developed new driller system for orthopedic surgery applications using Taguchi method. Int J Adv Manuf Technol., 76, 1437-1448. doi:10.1007/s00170-014-6327-0
  • Gok, A., Inal, S., Taspinar, F., Gulbandilar, E., & Gok, K. (2014b). Fatigue behaviors of different materials for schanz screws in femoral fracture model using finite element analysis. Optoelectronics and Advanced Materials-Rapid Communications, 8(5-6), 576-580.
  • Gok, A. (2015). A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA. Measurement, 70, 100-109. doi:10.1016/j.measurement.2015.03.037
  • Gok, K., Buluc, L., Muezzinoglu, U. S., & Kisioglu, Y. (2015a). Development of a new driller system to prevent the osteonecrosis in orthopedic surgery applications. J Braz. Soc. Mech. Sci. Eng., 37, 549-558. doi:10.1007/s40430-014-0186-3
  • Gok, A., Gok, K., & Bilgin, M. B. (2015b). Three-dimensional finite element model of the drilling process used for fixation of Salter–Harris type-3 fractures by using a K-wire. Mech. Sci., 6(2), 147-154. doi:10.5194/ms-6-147-2015
  • Hillery, M. T., & Shuaib, I. (1999). Temperature effects in the drilling of human and bovine bone. Journal of Materials Processing Technology, 92-93, 302-308. doi:10.1016/S0924-0136(99)00155-7
  • Inal, S., Gok, K., Gok, A., Pinar, A.M., & Inal, C. (2019). Comparison of Biomechanical Effects of Different Configurations of Kirschner Wires on the Epiphyseal Plate and Stability in a Salter-Harris Type 2 Distal Femoral Fracture Model. J Am Podiatr Med Assoc, 109(1), 13-21. doi:10.7547/16-112
  • MatWeb (2022). Searchable Database of Material Properties, http://www.matweb.com/
  • McElhaney, J., & Byars, E. F. (1965). Dynamic response of biological materials. American Society of Mechanical Engineers, New York.
  • Pignaton, W., Braz, J. R. C., Kusano, P. S., Módolo, M. P., de Carvalho, L. R., Braz, M. G., & Braz, L. G. (2016). Perioperative and Anesthesia-Related Mortality: An 8-Year Observational Survey From a Tertiary Teaching Hospital. Medicine, 95(2), e2208. doi:10.1097/md.0000000000002208
  • Sezek, S., Aksakal, B., & Karaca, F. (2012). Influence of drill parameters on bone temperature and necrosis: A FEM modelling and in vitro experiments. Comput. Mater. Sci., 60, 13-18. doi:10.1016/j.commatsci.2012.03.012
  • Stephenson, D. A., & Agapiou, J. S. (2018). Metal Cutting Theory and Practice. CRC Press.
  • Wu, A.-M., Bisignano, C., James, S. L., Abady, G. G., Abedi, A., Abu-Gharbieh, E., Alhassan, R. K., Alipour, V., Arabloo, J., Asaad, M., Asmare, W. N., Awedew, A. F., Banach, M., Banerjee, S. K., Bijani, A., Birhanu, T. T. M., Bolla, S. R., Cámera, L. A., Chang, J.-C., … Vos, T. (2021). Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. The Lancet Healthy Longevity, 2(9), e580-e592. doi:10.1016/s2666-7568(21)00172-0
  • Yuan-Kun, T., Li-Wen, C., Ching-Chieh, H., Yung-Chuan, C., Hsun-Heng, T., & Li-Chiang, L. (2008, May 16-18). Finite element simulation of drill bit and bone thermal contact during drilling. In: Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2008), Shanghai, China, (pp. 1268-1271). doi:10.1109/ICBBE.2008.645
  • Yuan-Kun, T., You-Yao, H., & Yung-Chuan, C. (2009). Finite element modeling of kirschner pin and bone thermalcontact during drilling. Life Sci. J., 6(4), 23-27.
  • Yuan-Kun, T., Wei-Hua, L., Li-Wen, C., Ji-Sih, C., & Yung-Chuan, C. (2011, May 10-12). The effects of drilling parameters on bone temperatures: a finite element simulation. In: Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2011), Wuhan, China, (pp. 1-4). doi:10.1109/icbbe.2011.5780448
There are 22 citations in total.

Details

Primary Language English
Journal Section Biomedical Engineering
Authors

Canan İnal This is me 0000-0002-8119-6978

Kadir Gök 0000-0001-5736-1884

Hediye Deniz Ada

Publication Date March 30, 2022
Submission Date February 1, 2022
Published in Issue Year 2022

Cite

APA İnal, C., Gök, K., & Ada, H. D. (2022). Design and Finite Element Analysis of a New Kirschner Wire for Fixing Bone Fractures in Orthopedic Surgery. Gazi University Journal of Science Part A: Engineering and Innovation, 9(1), 41-48. https://doi.org/10.54287/gujsa.1066230