Research Article
BibTex RIS Cite

Characterization of Hot Extruded Hybrid Composites Al 2024 Metal Matrix Reinforced with TiO2 and ZrO2

Year 2022, , 461 - 473, 31.12.2022
https://doi.org/10.54287/gujsa.1189756

Abstract

In this study, the microstructure and mechanical properties of Al 2024 powder, the prominent type of Al 2XXX series aluminum alloys widely used in the aerospace industry, and TiO2 and ZrO2 reinforcement elements used to improve material properties were investigated. Each reinforcement element is included in the material at the rate of 10%. For hybrid composite sample production, 10% hybrid composite material was procured by adding each reinforcing element equally. For each sample, powders were mixed in a 3D mixer to ensure an equal distribution of matrix powder and reinforcement elements in the samples. The samples were churned out by subjecting the two-stage them to a one-way hot press process. The furnace temperature was kept at 600 o C to preserve samples. Density and microstructure analyses were performed on the formed samples, and the results were evaluated. After all, the Archimedean density measurement method was used to obtain final densities, these samples were taken to bakelite for optical images, then scanning electron microscope (SEM) and Brinell hardness of the samples was measured. The cross-fracture strength test was completed to analyze each sample’s microstructural behavior. Finally, the theoretical radiation shielding properties of each sample were investigated. The Phy-X/PSD program was used to examine the radiation permeability properties. According to the test and analysis results, the effect of reinforcement elements on the material was determined. As a result, the highest hardness value measured was 97.5 HB at the 10% ZrO2 -reinforced MMCs. However, the relative density of the hybrid composite is better than ZrO2-reinforced MMCs. Thus, the best cross-fracture strength measured was 635 MPa in 10% hybrid MMCs. The radiation shielding parameters showed that the 10% ZrO2 -reinforced MMCs are best for shielding. Therefore, the second reasonable material for radiation shielding is hybrid reinforced materials. In the final decision, hybrid composite materials became prominent because the distinctive features of each material enhanced the samples.

Supporting Institution

Gazi Üniversitesi

Project Number

FGA-2022-7521

Thanks

The author expresses his gratitude to Gazi University Scientific Research Projects Office (Project No: FGA-2022-7521) for the financial support.

References

  • Alekhya, Ch., Prajoshna, A., Baig, M. A., Chandrika, Ch., Devaraju, A., & Gadakary, S. (2022). Preperation and characterization of Al-TiO2-Mg composites through powder metallurgy. Materials Today: Proceedings, 66(2), 489-495. doi:10.1016/j.matpr.2022.03.725
  • Bin, J., Zejun, W., & Naiqin, Z. (2006). Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scripta Materialia, 56(2), 169-172. doi:10.1016/j.scriptamat.2006.08.070
  • Dobrzański, L. A., Wlodarczyk, A., & Adamiak, M. (2005). Structure, properties and corrosion resistance of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the Al2O3 ceramic particles. Journal of Materials Processing Technology, 162-163, 27-32. doi:10.1016/j.jmatprotec.2005.02.006
  • Eckner, R., Krampf, M., Segel, C., & Krüger, L. (2016). Strength and fracture behaviour of a particle-reinforced transformation-thoughened trip steel/ZrO2 composite. Mechanics of Composite Materials, 51(6), 707-720. doi:10.1007/s11029-016-9541-z
  • Fang, Z. Z. (2005). Correlation of transverse rupture strength of WC-Co with hardness. International Journal of Refractory Metals & Hard Materials, 23(2), 119-127. doi:10.1016/j.ijrmhm.2004.11.005
  • Gökmen, U. (2016). Sıcak Ekstrüze Edilmiş Al 2024 Matrisli B4C/Al2O3 Takviyeli Hibrit Kompozitlerin Üretimi ve Karakterizasyonu. Journal of Polytechnic, 19(4), 445-453.
  • Gökmen, U., Özkan, Z., Taşçı, U., & Ocak, S. B. (2022) Investigation of radiation shielding by adding Al2O3 and SiO2 into the high-speed steel composites: comparative study. Physica Scripta, 97(5), 055307. doi:10.1088/1402-4896/ac65be
  • Joshua, K. J., Vijay, S. J., & Selvaraj, D. P. (2018). Effects of Nano TiO2 particles on microhardness and microstructural behaviour of AA7068 metal matrix composites. Ceramics International, 44(17), 20774-20781. doi:10.1016/j.ceramint.2018.08.077
  • Kim, C. K., Kim, Y. C., Park, J. I., Lee, S., Kim, N. J., & Yang, J. S. (2005). Effects of alloying elements on microstructure, hardness, and fracture toughness of centrifugally cast high-speed steel rolls. Metallugical and Materials Transactioans A, 36, 87-97. doi:10.1007/s11661-005-0141-0
  • Kim, Y., Jo, H., Allen, J. L., Choe, H., Wolfenstine, J., & Sakamoto, J. (2016). The effect of relative density on the mechanical properties of hot pressed cubic Li7La3Zr2O12. Journal of the American Ceramic Society, 99(4), 1367-1374. doi:10.1111/jace.14084
  • Kumar, G. B. V., Pramod, R., Sekhar, Ch. G., Kumar, G. P., & Bhanumurthy, T. (2019). Investigation of physical, mechanical and tribological properties of Al6061–ZrO2 nano-composites. Heliyon, 5(11), 02858. doi:10.1016/j.heliyon.2019.e02858
  • Leyi, G., Wei, Z., Jing, Z., & Songling, H. (2011). Mechanics analysis and simulation of material Brinell hardness measurement. Measurement, 44(10), 2129-2137. doi:10.1016/j.measurement.2011.07.024
  • McAlister, D. R. (2018). Gamma Ray Attenuation Properties of Common Shielding Materials. PG Research Foundation, Inc. 1955 University Lane Lisle, IL 60532. PDF
  • Naito, M., Kitamura, H., Koike, M., Kusano, H., Kusumoto, T., Uchihori, Y., Endo, T., Hagiwara, Y., Kiyono, N., Kodama, H., Matsuo, S., Mikoshiba, R., Takami, Y., Yamanaka, M., Akiyama, H., Nishimura, W., & Kodaira, S. (2021). Applicability of composite materials for space radiation shielding of spacecraft. Life Sciences in Space Research, 31(1), 71-79. doi:10.1016/j.lssr.2021.08.004
  • Nikbin, I. M., Mohebbi, R., Dezhampanah, S., Mehdipour, S., Mohammadi, R., & Nejat, T. (2019). Gamma ray shielding properties of heavy-weight concrete containning Nano-TiO2. Radiation Physics and Chemistry, 162, 157-167. doi:10.1016/j.radphyschem.2019.05.008
  • Park, J., Suh, H., Woo, S. M., Jeong, K., Seok, S., & Bae, S. (2019). Assesment of neutron shielding performance of nano-TiO2-incorporated cement paste by Monte Carlo simulation. Progress in Nuclear Energy, 117, 103043. doi:10.1016/j.pnucene.2019.103043
  • Paul, S., & Islam, M. M. (2021, December 12-14). Fabrication of Aluminum Metal Matrix Composites Reinforced with TiO2 by Powder Metallurgy Techniques. Proceedings of the International Conference on Mechanical Engineering and Renewable Energy (ICMERE 2021), Chattogram, Bangladesh.
  • Qian, J., Daemen, L. L., & Zhao, Y. (2005). Hardness and fracture toughness of moissanite. Diamond and Related Materials, 14(10), 1669-1672. doi:10.1016/j.diamond.2005.06.007
  • Rahimian, M., Ehsani, N., Parvin, N., & Baharvandi, H. R. (2009). The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. Journal of Materials Processing Technology. 209(14), 5387-5393. doi:10.1016/j.jmatprotec.2009.04.007
  • Sürücü, A. M., & Subaşı, S. (2021). Nanomateryallerin Kompozit Malzemelerin Radyasyon Zırhlama Özelliklerine Etkisinin İncelenmesi. El-Cezeri, 8(1), 182-194 . doi:10.31202/ecjse.812372
Year 2022, , 461 - 473, 31.12.2022
https://doi.org/10.54287/gujsa.1189756

Abstract

Project Number

FGA-2022-7521

References

  • Alekhya, Ch., Prajoshna, A., Baig, M. A., Chandrika, Ch., Devaraju, A., & Gadakary, S. (2022). Preperation and characterization of Al-TiO2-Mg composites through powder metallurgy. Materials Today: Proceedings, 66(2), 489-495. doi:10.1016/j.matpr.2022.03.725
  • Bin, J., Zejun, W., & Naiqin, Z. (2006). Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scripta Materialia, 56(2), 169-172. doi:10.1016/j.scriptamat.2006.08.070
  • Dobrzański, L. A., Wlodarczyk, A., & Adamiak, M. (2005). Structure, properties and corrosion resistance of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the Al2O3 ceramic particles. Journal of Materials Processing Technology, 162-163, 27-32. doi:10.1016/j.jmatprotec.2005.02.006
  • Eckner, R., Krampf, M., Segel, C., & Krüger, L. (2016). Strength and fracture behaviour of a particle-reinforced transformation-thoughened trip steel/ZrO2 composite. Mechanics of Composite Materials, 51(6), 707-720. doi:10.1007/s11029-016-9541-z
  • Fang, Z. Z. (2005). Correlation of transverse rupture strength of WC-Co with hardness. International Journal of Refractory Metals & Hard Materials, 23(2), 119-127. doi:10.1016/j.ijrmhm.2004.11.005
  • Gökmen, U. (2016). Sıcak Ekstrüze Edilmiş Al 2024 Matrisli B4C/Al2O3 Takviyeli Hibrit Kompozitlerin Üretimi ve Karakterizasyonu. Journal of Polytechnic, 19(4), 445-453.
  • Gökmen, U., Özkan, Z., Taşçı, U., & Ocak, S. B. (2022) Investigation of radiation shielding by adding Al2O3 and SiO2 into the high-speed steel composites: comparative study. Physica Scripta, 97(5), 055307. doi:10.1088/1402-4896/ac65be
  • Joshua, K. J., Vijay, S. J., & Selvaraj, D. P. (2018). Effects of Nano TiO2 particles on microhardness and microstructural behaviour of AA7068 metal matrix composites. Ceramics International, 44(17), 20774-20781. doi:10.1016/j.ceramint.2018.08.077
  • Kim, C. K., Kim, Y. C., Park, J. I., Lee, S., Kim, N. J., & Yang, J. S. (2005). Effects of alloying elements on microstructure, hardness, and fracture toughness of centrifugally cast high-speed steel rolls. Metallugical and Materials Transactioans A, 36, 87-97. doi:10.1007/s11661-005-0141-0
  • Kim, Y., Jo, H., Allen, J. L., Choe, H., Wolfenstine, J., & Sakamoto, J. (2016). The effect of relative density on the mechanical properties of hot pressed cubic Li7La3Zr2O12. Journal of the American Ceramic Society, 99(4), 1367-1374. doi:10.1111/jace.14084
  • Kumar, G. B. V., Pramod, R., Sekhar, Ch. G., Kumar, G. P., & Bhanumurthy, T. (2019). Investigation of physical, mechanical and tribological properties of Al6061–ZrO2 nano-composites. Heliyon, 5(11), 02858. doi:10.1016/j.heliyon.2019.e02858
  • Leyi, G., Wei, Z., Jing, Z., & Songling, H. (2011). Mechanics analysis and simulation of material Brinell hardness measurement. Measurement, 44(10), 2129-2137. doi:10.1016/j.measurement.2011.07.024
  • McAlister, D. R. (2018). Gamma Ray Attenuation Properties of Common Shielding Materials. PG Research Foundation, Inc. 1955 University Lane Lisle, IL 60532. PDF
  • Naito, M., Kitamura, H., Koike, M., Kusano, H., Kusumoto, T., Uchihori, Y., Endo, T., Hagiwara, Y., Kiyono, N., Kodama, H., Matsuo, S., Mikoshiba, R., Takami, Y., Yamanaka, M., Akiyama, H., Nishimura, W., & Kodaira, S. (2021). Applicability of composite materials for space radiation shielding of spacecraft. Life Sciences in Space Research, 31(1), 71-79. doi:10.1016/j.lssr.2021.08.004
  • Nikbin, I. M., Mohebbi, R., Dezhampanah, S., Mehdipour, S., Mohammadi, R., & Nejat, T. (2019). Gamma ray shielding properties of heavy-weight concrete containning Nano-TiO2. Radiation Physics and Chemistry, 162, 157-167. doi:10.1016/j.radphyschem.2019.05.008
  • Park, J., Suh, H., Woo, S. M., Jeong, K., Seok, S., & Bae, S. (2019). Assesment of neutron shielding performance of nano-TiO2-incorporated cement paste by Monte Carlo simulation. Progress in Nuclear Energy, 117, 103043. doi:10.1016/j.pnucene.2019.103043
  • Paul, S., & Islam, M. M. (2021, December 12-14). Fabrication of Aluminum Metal Matrix Composites Reinforced with TiO2 by Powder Metallurgy Techniques. Proceedings of the International Conference on Mechanical Engineering and Renewable Energy (ICMERE 2021), Chattogram, Bangladesh.
  • Qian, J., Daemen, L. L., & Zhao, Y. (2005). Hardness and fracture toughness of moissanite. Diamond and Related Materials, 14(10), 1669-1672. doi:10.1016/j.diamond.2005.06.007
  • Rahimian, M., Ehsani, N., Parvin, N., & Baharvandi, H. R. (2009). The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. Journal of Materials Processing Technology. 209(14), 5387-5393. doi:10.1016/j.jmatprotec.2009.04.007
  • Sürücü, A. M., & Subaşı, S. (2021). Nanomateryallerin Kompozit Malzemelerin Radyasyon Zırhlama Özelliklerine Etkisinin İncelenmesi. El-Cezeri, 8(1), 182-194 . doi:10.31202/ecjse.812372
There are 20 citations in total.

Details

Primary Language English
Journal Section Metallurgical and Materials Engineering
Authors

Ayşenur Pektaş 0000-0002-9448-1591

Okan Can Ebetürk 0000-0002-5324-6018

Uğur Gökmen 0000-0002-6903-0297

Project Number FGA-2022-7521
Publication Date December 31, 2022
Submission Date October 15, 2022
Published in Issue Year 2022

Cite

APA Pektaş, A., Ebetürk, O. C., & Gökmen, U. (2022). Characterization of Hot Extruded Hybrid Composites Al 2024 Metal Matrix Reinforced with TiO2 and ZrO2. Gazi University Journal of Science Part A: Engineering and Innovation, 9(4), 461-473. https://doi.org/10.54287/gujsa.1189756