Research Article
BibTex RIS Cite
Year 2022, , 545 - 553, 31.12.2022
https://doi.org/10.54287/gujsa.1205356

Abstract

References

  • Attia, N. F., Jung, M., Park, J., Jang, H., Lee, K., & Oh, H. (2020). Flexible nanoporous activated carbon cloth for achieving high H2, CH4, and CO2 storage capacities and selective CO2/CH4 separation. Chemical Engineering Journal, 379, 122367. doi:10.1016/j.cej.2019.122367
  • Braun, E., Lee, Y., Moosavi, S. M., Barthel, S., Mercado, R., Baburin, I. A., Proserpio, D. M., & Smit, B. (2018). Generating carbon schwarzites via zeolite-templating. Proceedings of the National Academy of Sciences of the United States of America, 115(35), E8116-E8124. doi:10.1073/pnas.1805062115
  • Dal-Cin, M. M., Kumar, A., & Layton, L. (2008). Revisiting the experimental and theoretical upper bounds of light pure gas selectivity–permeability for polymeric membranes. Journal of Membrane Science, 323(2), 299-308. doi:10.1016/j.memsci.2008.06.027
  • Deniz, C. U. (2022). Computational screening of zeolite templated carbons for hydrogen storage. Computational Materials Science, 202, 110950. doi:10.1016/j.commatsci.2021.110950
  • Dubbeldam, D., Calero, S., Ellis, D. E., & Snurr, R. Q. (2016). RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation, 42(2), 81-101. doi:10.1080/08927022.2015.1010082
  • Dubbeldam, D., Calero, S., & Vlugt, T. J. H. (2018). iRASPA: GPU-accelerated visualization software for materials scientists. Molecular Simulation, 44(8), 653-676. doi:10.1080/08927022.2018.1426855
  • Kosinov, N., Gascon, J., Kapteijn, F., & Hensen, E. J. M. (2016). Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499, 65-79. doi:10.1016/j.memsci.2015.10.049
  • Li, X.-D., Yang, P., Huang, X.-Y., Liu, X.-Y., Yu, J.-X., & Chen, Z. (2022). Computational simulation study on adsorption and separation of CH4/H2 in five higher-valency covalent organic frameworks. Materials Today Communications, 33, 104374. doi:10.1016/j.mtcomm.2022.104374
  • Lithoxoos, G. P., Labropoulos, A., Peristeras, L. D., Kanellopoulos, N., Samios, J., & Economou, I. G. (2010). Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study. Journal of Supercritical Fluids, 55(2), 510-523. doi:10.1016/j.supflu.2010.09.017
  • Majumdar, S., Maurya, M., & Singh, J. K. (2018). Adsorptive Separation of CO2 from Multicomponent Mixtures of Flue Gas in Carbon Nanotube Arrays: A Grand Canonical Monte Carlo Study. Energy & Fuels, 32(5), 6090-6097. doi:10.1021/acs.energyfuels.8b00649
  • Mert, H., Deniz, C. U., & Baykasoglu, C. (2020). Monte Carlo simulations of hydrogen adsorption in fullerene pillared graphene nanocomposites. Molecular Simulation, 46(8), 650-659. doi:10.1080/08927022.2020.1758696
  • Michels, A., de Graaff, W., & Ten Seldam, C. A. (1960). Virial coefficients of hydrogen and deuterium at temperatures between −175°C and +150°C. Conclusions from the second virial coefficient with regards to the intermolecular potential. Physica, 26(6), 393-408. doi:10.1016/0031-8914(60)90029-X
  • Niaz, S., Manzoor, T., & Pandith, A. H. (2015). Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews, 50, 457-469. doi:10.1016/j.rser.2015.05.011
  • Nishihara, H., & Kyotani, T. (2018). Zeolite-templated carbons-three-dimensional microporous graphene frameworks. Chemical Communications, 54(45), 5648-5673. doi:10.1039/c8cc01932k
  • Ozturk, Z., Baykasoglu, C., Celebi, A. T., Kirca, M., Mugan, A., & To, A. C. (2015). Hydrogen storage in heat welded random CNT network structures. International Journal of Hydrogen Energy, 40(1), 403-411. doi:10.1016/j.ijhydene.2014.10.148
  • Peng, X., Zhou, J., Wang, W., & Cao, D. (2010). Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon, 48(13), 3760-3768. doi:10.1016/j.carbon.2010.06.038
  • Sha, H., & Faller, R. (2016). Molecular simulation of adsorption and separation of pure noble gases and noble gas mixtures on single wall carbon nanotubes. Computational Materials Science, 114, 160-166. doi:10.1016/j.commatsci.2015.12.031
  • van den Berg, A. W. C., & Areán, C. O. (2008). Materials for hydrogen storage: current research trends and perspectives. Chemical Communications, 6, 668-681. doi:10.1039/B712576N
  • Vlugt, T. J. H., García-Pérez, E., Dubbeldam, D., Ban, S., & Calero, S. (2008). Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. Journal of Chemical Theory and Computation, 4(7), 1107-1118. doi:10.1021/ct700342k
  • Wang, H., & Cao, D. (2015). Diffusion and Separation of H2, CH4, CO2, and N2 in Diamond-Like Frameworks. The Journal of Physical Chemistry C, 119(11), 6324-6330. doi:10.1021/jp512275p
  • Yuan, J., Liu, X., Li, X., & Yu, J. (2021). Computer simulations for the adsorption and separation of CH4/H2/CO2/N2 gases by hybrid ultramicroporous materials. Materials Today Communications, 26, 101987. doi:10.1016/j.mtcomm.2020.101987
  • Zhang, Q., Uchaker, E., Candelaria, S. L., & Cao, G. (2013). Nanomaterials for energy conversion and storage. Chemical Society Reviews, 42(7), 3127-3171. doi:10.1039/C3CS00009E
  • Zhou B., Li W., & Zhang J. (2017). The Journal of Physical Chemistry C, 121(37), 20197-20204. doi:10.1021/acs.jpcc.7b07108

A Computational Study of the Adsorptive Separation of Methane and Hydrogen in Zeolite Templated Carbons

Year 2022, , 545 - 553, 31.12.2022
https://doi.org/10.54287/gujsa.1205356

Abstract

Combustion of conventional energy sources produces pollutants such as SOx, NOx, and CO; the use of hydrogen and methane can eliminate these harmful emissions. In fuel cell technology and other uses, hydrogen must be refined by extracting methane from the methane/hydrogen combination, produced via dry or steam reforming. This study investigates the adsorption and separation capabilities of recently discovered zeolite-templated carbons (ZTCs) for binary mixtures consisting of hydrogen and methane. To assess the adsorption and separation performances of these carbon-based nanostructures, grand canonical Monte Carlo (GCMC) simulations were used. The simulation results revealed that AFY (|(C6H15N)3(H2O)7|[Co3Al5P8O32]) and RWY (|(C6H18N4)16| [Ga32Ge16S96]) structures could be viable alternatives for applications involving adsorptive gas separation based on selectivity and the CH4 uptake capacity. The selectivity of AFY was calculated to be 176, while its capacity to uptake CH4 was found to be 2.57 mmol/g, the selectivity of RWY was calculated to be 132, and its CH4 uptake was 3.49 mmol/g.

References

  • Attia, N. F., Jung, M., Park, J., Jang, H., Lee, K., & Oh, H. (2020). Flexible nanoporous activated carbon cloth for achieving high H2, CH4, and CO2 storage capacities and selective CO2/CH4 separation. Chemical Engineering Journal, 379, 122367. doi:10.1016/j.cej.2019.122367
  • Braun, E., Lee, Y., Moosavi, S. M., Barthel, S., Mercado, R., Baburin, I. A., Proserpio, D. M., & Smit, B. (2018). Generating carbon schwarzites via zeolite-templating. Proceedings of the National Academy of Sciences of the United States of America, 115(35), E8116-E8124. doi:10.1073/pnas.1805062115
  • Dal-Cin, M. M., Kumar, A., & Layton, L. (2008). Revisiting the experimental and theoretical upper bounds of light pure gas selectivity–permeability for polymeric membranes. Journal of Membrane Science, 323(2), 299-308. doi:10.1016/j.memsci.2008.06.027
  • Deniz, C. U. (2022). Computational screening of zeolite templated carbons for hydrogen storage. Computational Materials Science, 202, 110950. doi:10.1016/j.commatsci.2021.110950
  • Dubbeldam, D., Calero, S., Ellis, D. E., & Snurr, R. Q. (2016). RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation, 42(2), 81-101. doi:10.1080/08927022.2015.1010082
  • Dubbeldam, D., Calero, S., & Vlugt, T. J. H. (2018). iRASPA: GPU-accelerated visualization software for materials scientists. Molecular Simulation, 44(8), 653-676. doi:10.1080/08927022.2018.1426855
  • Kosinov, N., Gascon, J., Kapteijn, F., & Hensen, E. J. M. (2016). Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 499, 65-79. doi:10.1016/j.memsci.2015.10.049
  • Li, X.-D., Yang, P., Huang, X.-Y., Liu, X.-Y., Yu, J.-X., & Chen, Z. (2022). Computational simulation study on adsorption and separation of CH4/H2 in five higher-valency covalent organic frameworks. Materials Today Communications, 33, 104374. doi:10.1016/j.mtcomm.2022.104374
  • Lithoxoos, G. P., Labropoulos, A., Peristeras, L. D., Kanellopoulos, N., Samios, J., & Economou, I. G. (2010). Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study. Journal of Supercritical Fluids, 55(2), 510-523. doi:10.1016/j.supflu.2010.09.017
  • Majumdar, S., Maurya, M., & Singh, J. K. (2018). Adsorptive Separation of CO2 from Multicomponent Mixtures of Flue Gas in Carbon Nanotube Arrays: A Grand Canonical Monte Carlo Study. Energy & Fuels, 32(5), 6090-6097. doi:10.1021/acs.energyfuels.8b00649
  • Mert, H., Deniz, C. U., & Baykasoglu, C. (2020). Monte Carlo simulations of hydrogen adsorption in fullerene pillared graphene nanocomposites. Molecular Simulation, 46(8), 650-659. doi:10.1080/08927022.2020.1758696
  • Michels, A., de Graaff, W., & Ten Seldam, C. A. (1960). Virial coefficients of hydrogen and deuterium at temperatures between −175°C and +150°C. Conclusions from the second virial coefficient with regards to the intermolecular potential. Physica, 26(6), 393-408. doi:10.1016/0031-8914(60)90029-X
  • Niaz, S., Manzoor, T., & Pandith, A. H. (2015). Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews, 50, 457-469. doi:10.1016/j.rser.2015.05.011
  • Nishihara, H., & Kyotani, T. (2018). Zeolite-templated carbons-three-dimensional microporous graphene frameworks. Chemical Communications, 54(45), 5648-5673. doi:10.1039/c8cc01932k
  • Ozturk, Z., Baykasoglu, C., Celebi, A. T., Kirca, M., Mugan, A., & To, A. C. (2015). Hydrogen storage in heat welded random CNT network structures. International Journal of Hydrogen Energy, 40(1), 403-411. doi:10.1016/j.ijhydene.2014.10.148
  • Peng, X., Zhou, J., Wang, W., & Cao, D. (2010). Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon, 48(13), 3760-3768. doi:10.1016/j.carbon.2010.06.038
  • Sha, H., & Faller, R. (2016). Molecular simulation of adsorption and separation of pure noble gases and noble gas mixtures on single wall carbon nanotubes. Computational Materials Science, 114, 160-166. doi:10.1016/j.commatsci.2015.12.031
  • van den Berg, A. W. C., & Areán, C. O. (2008). Materials for hydrogen storage: current research trends and perspectives. Chemical Communications, 6, 668-681. doi:10.1039/B712576N
  • Vlugt, T. J. H., García-Pérez, E., Dubbeldam, D., Ban, S., & Calero, S. (2008). Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. Journal of Chemical Theory and Computation, 4(7), 1107-1118. doi:10.1021/ct700342k
  • Wang, H., & Cao, D. (2015). Diffusion and Separation of H2, CH4, CO2, and N2 in Diamond-Like Frameworks. The Journal of Physical Chemistry C, 119(11), 6324-6330. doi:10.1021/jp512275p
  • Yuan, J., Liu, X., Li, X., & Yu, J. (2021). Computer simulations for the adsorption and separation of CH4/H2/CO2/N2 gases by hybrid ultramicroporous materials. Materials Today Communications, 26, 101987. doi:10.1016/j.mtcomm.2020.101987
  • Zhang, Q., Uchaker, E., Candelaria, S. L., & Cao, G. (2013). Nanomaterials for energy conversion and storage. Chemical Society Reviews, 42(7), 3127-3171. doi:10.1039/C3CS00009E
  • Zhou B., Li W., & Zhang J. (2017). The Journal of Physical Chemistry C, 121(37), 20197-20204. doi:10.1021/acs.jpcc.7b07108
There are 23 citations in total.

Details

Primary Language English
Journal Section Chemical Engineering
Authors

Celal Utku Deniz 0000-0003-0948-9626

Publication Date December 31, 2022
Submission Date November 16, 2022
Published in Issue Year 2022

Cite

APA Deniz, C. U. (2022). A Computational Study of the Adsorptive Separation of Methane and Hydrogen in Zeolite Templated Carbons. Gazi University Journal of Science Part A: Engineering and Innovation, 9(4), 545-553. https://doi.org/10.54287/gujsa.1205356