Analysis of Dislocation Density for GaN Based HEMTs in Screw Mod
Year 2023,
, 131 - 139, 27.06.2023
Özlem Bayal
,
Esra Balcı
,
Ahmet Kursat Bılgılı
,
Mustafa Öztürk
,
Süleyman Özçelik
,
Ekmel Özbay
Abstract
Quick response is an important feature in design of optoelectronic cards. So in this study, structural properties of GaN/AlN/AlGaN HEMTs structures grown on sapphire by the chemical vapor adjustment method are analyzed by the X-ray diffraction method. The main property of these kind of materials is that they are resistant to high voltage, temperature, and pressure. Although their performance is worse compared silicon, for forcing limit standards, they present wide research field. In this study, the focus of investigation is dislocation density stemming from lattice mismatch between layers and wafer causing cracks on the surface. In HEMT structure calculation of dislocation density for GaN and AlN represents all structure. High dislocation density for AlN layer is determined because of aggressive behavior of Al element in the structure. Also, quantized GaN layers stop moving of dislocations and prevents surface cracks.
Supporting Institution
Presidency Strategy and Budget Directorate
Project Number
2016K121220
References
- Bayrak, S. T. (2003) AlxGa1-xN/GaN hetero yapılardaki 2BEG’nın elektriksel ve optiksel karakterizasyonu MSc Thesis, Balıkesir University.
- Bernardini, F., Fiorentini, V., & Vanderbilt, D. (1997). Spontaneous polarization and piezoelectric constants of III-V nitrides Physical Review B, 56(16), R10024. doi:10.1103/PhysRevB.56.R10024
- Bilgili, A. K., Çağatay, R., Öztürk, M. K., & Özer, M. (2022). Investigation of Electrical and Structural Properties of Ag/TiO2/n-InP/Au Schottky Diodes with Different Thickness TiO2 Interface. Silicon, 14(6), 3013-3018. doi:10.1007/s12633-021-01093-5
- Chen, Y., Liu, J., Zeng, M., Lu, F., Lv, T., Chang, Y., Lan, H., Wei, B., Sun, R., Gao, J., Wang, Z., & Fu, L. (2020). Universal growth of ultra-thin III–V semiconductor single crystals. Nature Communications, 11(1), 3979. doi: 10.1038/s41467-020-17693-5
- Elhamri, S., Newrock, R. S., Mast, D. B., Ahoujja, M., Mitchel, W. C., Redwing J. M., Tischler, M. A., & Flynn, J. S. (1998). Al0.15Ga0.85N/GaN heterostructures: Effective mass and scattering times. Physical Review B, 57(3), 1374-1377. doi:10.1103/PhysRevB.57.1374
- Feaugas, X., & Delafosse, D. (2019). Hydrogen and crystal defects interactions: Effects on plasticity and fracture. In: C. Blanc, & I. Aubert (Eds.), Mechanics - Microstructure - Corrosion Coupling Concepts, Experiments, Modeling and Cases (pp. 199-222). Elsevier. doi:10.1016/B978-1-78548-309-7.50009-0
- Gay, P., Hirsch, P. B., & Kelly, A. (1953). The estimation of dislocation densities in metals from X-ray data. Acta Metallurgica, 315(3), 315-319. doi:10.1016/0001-6160(53)90106-0
- Heinke, H., Kirchner, V., Einfeldt, S., & Hommel, D. (2000). X-ray diffraction analysis of the defect structure in epitaxial GaN. Applied Physics Letters, 77(14), 2145-2147. doi:10.1063/1.1314877
- Kapolnek, D., Wu, X. H., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., & Speck, J. S. (1995). Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire. Applied Physics Letters, 67(11), 1541-1543. doi:10.1063/1.114486
- Kato, M., Asada, T., Maeda, T., Ito, K., Tomita, K., Narita, T., & Kachi, T. (2021). Contribution of the carbon-originated hole trap to slow decays of photoluminescence and photoconductivity in homoepitaxial n-type GaN layers. Journal of Applied Physics, 129(11), 115701. doi:10.1063/5.0041287
- Look, D. C., & Sizelove, J. R. (1999). Dislocation Scattering in GaN. Physical Review Letters, 82(6), 1237-1240. doi:10.1103/PhysRevLett.82.1237
- Morkoç, H. (1999). General Properties of Nitrides. In: Nitride Semiconductors and Devices (pp. 8-44), (Springer Series in Materials Science, 32). Springer. doi:10.1007/978-3-642-58562-3_2
- Nand, M., Tripathi, S., Rajput, P., Kumar, M., Kumar, Y., Mandal, S. K., Urkude, R., Gupta, M., Dawar, A., Ojha, S., Rai, S. K., & Jha, S. N. (2022). Different polymorphs of Y doped HfO2 epitaxial thin films: Insights into structural, electronic and optical properties. Journal of Alloys and Compounds, 928, 167099. doi:10.1016/j.jallcom.2022.167099
- Strite, S., & Morkoç, H. (1992). Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. Journal of Vacuum Science & Technology B, 10(4), 1237-1266. doi: 10.1116/1.585897
- Subramanian, B., Anandan, M., Veerappan, S., Panneerselvam, M., Wasim, M., Radhakrishnan, S. K., Pechimuthu, P., Verma, Y. K., Vivekanandhan, S. N., & Raju, E. (2020). Switching transient analysis and characterization of an E-mode B-doped GaN-capped AlGaN DH-HEMT with a freewheeling Schottky barrier diode (SBD). Journal of Electronic Materials, 49(7), 4091-4099. doi:10.1007/s11664-020-08113-x
- Vurgaftman, I., Meyer, J. R., & Ram-Mohan, L. R (2001). Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 89(11), 5815-5875. doi:10.1063/1.1368156
- Wu, J., Walukiewicz, W., Shan, W., Yu, K. M., Ager III, J. W., Haller, E. E., Lu, H., & Schaff, W. J. (2002). Effects of the narrow band gap on the properties of InN. Physical Review B, 66(20), 201403. doi:10.1103/PhysRevB.66.201403
- Yang, Z., Zhong, Y., Zhou, X., Zhang, W., Yin, Y., Fang, W., & Xue, H. (2022). Metal-organic framework-based sensors for nitrite detection: a short review. Journal of Food Measurement and Characterization, 16(2), 1572-1582. doi: 10.1007/s11694-021-01270-5
Year 2023,
, 131 - 139, 27.06.2023
Özlem Bayal
,
Esra Balcı
,
Ahmet Kursat Bılgılı
,
Mustafa Öztürk
,
Süleyman Özçelik
,
Ekmel Özbay
Project Number
2016K121220
References
- Bayrak, S. T. (2003) AlxGa1-xN/GaN hetero yapılardaki 2BEG’nın elektriksel ve optiksel karakterizasyonu MSc Thesis, Balıkesir University.
- Bernardini, F., Fiorentini, V., & Vanderbilt, D. (1997). Spontaneous polarization and piezoelectric constants of III-V nitrides Physical Review B, 56(16), R10024. doi:10.1103/PhysRevB.56.R10024
- Bilgili, A. K., Çağatay, R., Öztürk, M. K., & Özer, M. (2022). Investigation of Electrical and Structural Properties of Ag/TiO2/n-InP/Au Schottky Diodes with Different Thickness TiO2 Interface. Silicon, 14(6), 3013-3018. doi:10.1007/s12633-021-01093-5
- Chen, Y., Liu, J., Zeng, M., Lu, F., Lv, T., Chang, Y., Lan, H., Wei, B., Sun, R., Gao, J., Wang, Z., & Fu, L. (2020). Universal growth of ultra-thin III–V semiconductor single crystals. Nature Communications, 11(1), 3979. doi: 10.1038/s41467-020-17693-5
- Elhamri, S., Newrock, R. S., Mast, D. B., Ahoujja, M., Mitchel, W. C., Redwing J. M., Tischler, M. A., & Flynn, J. S. (1998). Al0.15Ga0.85N/GaN heterostructures: Effective mass and scattering times. Physical Review B, 57(3), 1374-1377. doi:10.1103/PhysRevB.57.1374
- Feaugas, X., & Delafosse, D. (2019). Hydrogen and crystal defects interactions: Effects on plasticity and fracture. In: C. Blanc, & I. Aubert (Eds.), Mechanics - Microstructure - Corrosion Coupling Concepts, Experiments, Modeling and Cases (pp. 199-222). Elsevier. doi:10.1016/B978-1-78548-309-7.50009-0
- Gay, P., Hirsch, P. B., & Kelly, A. (1953). The estimation of dislocation densities in metals from X-ray data. Acta Metallurgica, 315(3), 315-319. doi:10.1016/0001-6160(53)90106-0
- Heinke, H., Kirchner, V., Einfeldt, S., & Hommel, D. (2000). X-ray diffraction analysis of the defect structure in epitaxial GaN. Applied Physics Letters, 77(14), 2145-2147. doi:10.1063/1.1314877
- Kapolnek, D., Wu, X. H., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., & Speck, J. S. (1995). Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire. Applied Physics Letters, 67(11), 1541-1543. doi:10.1063/1.114486
- Kato, M., Asada, T., Maeda, T., Ito, K., Tomita, K., Narita, T., & Kachi, T. (2021). Contribution of the carbon-originated hole trap to slow decays of photoluminescence and photoconductivity in homoepitaxial n-type GaN layers. Journal of Applied Physics, 129(11), 115701. doi:10.1063/5.0041287
- Look, D. C., & Sizelove, J. R. (1999). Dislocation Scattering in GaN. Physical Review Letters, 82(6), 1237-1240. doi:10.1103/PhysRevLett.82.1237
- Morkoç, H. (1999). General Properties of Nitrides. In: Nitride Semiconductors and Devices (pp. 8-44), (Springer Series in Materials Science, 32). Springer. doi:10.1007/978-3-642-58562-3_2
- Nand, M., Tripathi, S., Rajput, P., Kumar, M., Kumar, Y., Mandal, S. K., Urkude, R., Gupta, M., Dawar, A., Ojha, S., Rai, S. K., & Jha, S. N. (2022). Different polymorphs of Y doped HfO2 epitaxial thin films: Insights into structural, electronic and optical properties. Journal of Alloys and Compounds, 928, 167099. doi:10.1016/j.jallcom.2022.167099
- Strite, S., & Morkoç, H. (1992). Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. Journal of Vacuum Science & Technology B, 10(4), 1237-1266. doi: 10.1116/1.585897
- Subramanian, B., Anandan, M., Veerappan, S., Panneerselvam, M., Wasim, M., Radhakrishnan, S. K., Pechimuthu, P., Verma, Y. K., Vivekanandhan, S. N., & Raju, E. (2020). Switching transient analysis and characterization of an E-mode B-doped GaN-capped AlGaN DH-HEMT with a freewheeling Schottky barrier diode (SBD). Journal of Electronic Materials, 49(7), 4091-4099. doi:10.1007/s11664-020-08113-x
- Vurgaftman, I., Meyer, J. R., & Ram-Mohan, L. R (2001). Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 89(11), 5815-5875. doi:10.1063/1.1368156
- Wu, J., Walukiewicz, W., Shan, W., Yu, K. M., Ager III, J. W., Haller, E. E., Lu, H., & Schaff, W. J. (2002). Effects of the narrow band gap on the properties of InN. Physical Review B, 66(20), 201403. doi:10.1103/PhysRevB.66.201403
- Yang, Z., Zhong, Y., Zhou, X., Zhang, W., Yin, Y., Fang, W., & Xue, H. (2022). Metal-organic framework-based sensors for nitrite detection: a short review. Journal of Food Measurement and Characterization, 16(2), 1572-1582. doi: 10.1007/s11694-021-01270-5