Self-Powered Mechanical Energy Sensor Application of SnO2/Ag and PMMA/ITO Nanocomposites via Triboelectric Effect
Year 2023,
, 149 - 156, 27.06.2023
Gizem Durak Yüzüak
,
Mehmet Çetin
,
Ercüment Yüzüak
Abstract
The triboelectric nanogenerator is a state-of-the-art device for addressing the growing problem of meeting the world's ever-increasing energy needs by converting mechanical energy into electrical energy. Using the popular semiconductor SnO2 nanostructured thin films as a triboelectric layer over contact regions, as opposed to polymers with lesser performance, increases the output power and life time of nanogenerators. In order to design a triboelectric nanogenerator, deposited thin film SnO2 is used as a friction layer with Ag electrode after heat-treatment at 623 K with a contrary layer of PMMA poly (methyl-methacrylate) with ITO electrode. The structural and electrical properties were analyzed by using scanning electron microscopy (SEM), electro-impedance spectroscopy (EIS) and atomic force microscopy (AFM) measurements. The increased output power of the triboelectric nanogenerator is attributed to the nanoscale PMMA contact charge created by tunneling electrons in the SnO2/Ag nanocomposite thin film layer. Due to its proximity to the PMMA/ITO surface, the SnO2/Ag layer causes electron field emission, and tapping the SnO2/Ag layer may result in electron cloud overlap. Similar to a semiconductor/insulator interface, the Fermi level of SnO2 plays a crucial role in electron transport. The system efficiency stated as a touch detector in a conventional keyboard that generates its own power is revealed in part by an analysis of its operating state up to the 4V.
Supporting Institution
Tubitak
Project Number
Tubitak-119M972
Thanks
This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under the grant number of 119M972.
References
- Babu, A., Rakesh, D. Supraja, P., Mishra, S., Kumar, K. U., Kumar, R. R., Haranath, D., Mamidala, E., & Nagapuri, R. (2022). Plant-based triboelectric nanogenerator for biomechanical energy harvesting. Results in Surfaces and Interfaces, 8, 100075. doi:10.1016/j.rsurfi.2022.100075
- Breckenridge, R. G., & Hosler, W. R. (1953). Electrical properties of titanium dioxide semiconductors. Physical Review, 91(4), 793-802. doi:10.1103/PhysRev.91.793
- Bondarenko, A. S., & Ragoisha, G. A. (2005). EIS Spectrum Analyser. In: Pomerantsev A. L. (Eds.), Progress in Chemometrics Research (pp. 89-102). Nova Science Publishers: New York. URL: http://www.abc.chemistry.bsu.by/vi/analyser/
- Chandra Bose, A., Thangadurai, P., Ramasamy, S., & Purniah, B. (2005). Impedance spectroscopy and DSC studies on nanotructured SnO2. Vacuum, 77(3), 293-300. doi:10.1016/j.vacuum.2004.10.007
- Chen, J., & Wang, Z. L. (2017). Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator. Joule, 1(3), 480-521. doi:10.1016/j.joule.2017.09.004
- Gao, C., Li, X., Zhu, X., Chen, L., Zhang, Z., Wang, Y., Zhang, Z., Duan, H., & Xie, E. (2014). Branched hierarchical photoanode of titanium dioxide nanoneedles on tin dioxide nanofiber network for high performance dye-sensitized solar cells. Journal of Power Sources, 264, 15-21. doi:10.1016/j.jpowsour.2014.04.059
- Khandelwal, G., & Dahiya R. (2022). Self-powered active sensing based on triboelectric generator, Advanced Materials, 34(33), 2200724. doi:10.1002/adma.202200724
- Lee, N. H., Yoon, S. Y., Kim, D. H., Kim, S. K., & Choi, B. J. (2017). Triboelectric Charge Generation by Semiconducting SnO2 Film Grown by Atomic Layer Deposition. Electronic Materials Letters, 13(4), 318-323. doi:10.1007/s13391-017-6289-0
- Lee, J. R., Kim, D. G., Lee, G. H., Park, Y. H., & Song, P. K. (2007). Characteristics of IZSO films deposited by a co-sputtering system. Metals and Materials International, 13(5), 399-402. doi:10.1007/BF03027875
- Liang, X., Liu, S., Yang, H., & Jiang, T. (2023). Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: Unit Integration and Network Construction. Electronics, 12(1), 225. doi:10.3390/electronics12010225
- Muthukrishnan, A. P., Lee, J., Kim, J., Kim, C. S., & Jo, S., (2022). Low-temperature solution-processed SnO2 electron transport layer modified by oxygen plasma for planar perovskite solar cells. RSC Advances, 12(8), 4883-4890. doi:10.1039/D1RA08946C
- Shen, W., Ou, T., Wang, J., Qin, T., Zhang, G., Zhang, X., Han, Y., Ma, Y., & Gao, C. (2018). Effects of high pressure on the electrical resistivity and dielectric properties of nanocrystalline SnO2. Scientific Reports, 8, 5086. doi:10.1038/s41598-018-22965-8
- Tasneem, N. T., Biswas, D. K., Adhikari, P. R., Gunti, A., Patwary, A. B., Reid, R. C., & Mahbub, I. (2022). A self-powered wireless motion sensor based on a high-surface area reverse electrowetting-on-dielectric energy harvester. Scientific Reports, 12, 3782. doi:10.1038/s41598-022-07631-4
- Terrier, C., Chatelon, J. P., & Roger, J. A. (1997). Electrical and optical properties of Sb:SnO2 thin films obtained by the sol-gel method. Thin Solid Films, 295(1-2), 95-100. doi:10.1016/S0040-6090(96)09324-8
- Turan, E., Kul, M., & Akın, S. (2022). Structural and optical investigation of spray-deposited SnO2 thin films. Journal of Materials Science: Materials in Electronics, 33(19), 15689-15703. doi:10.1007/s10854-022-08472-7
- Ouyang, P., Zhang, H., Wang, Y., Chen, W., & Li, Z. (2014). Electrochemical & microstructural investigations of magnetron sputtered nanostructured ATO thin films for application in Li-ion battery. Electrochimica Acta, 130, 232-238. doi:10.1016/j.electacta.2014.03.021
- Wang, Z. L. (2013). Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano, 7(11), 9533-9557. doi:10.1021/nn404614z
- Wang, Z. L. (2015). Triboelectric nanogenerators as new energy technology and self-powered sensors-Principles, problems and perspectives. Faraday Discussions, 176, 447-458. doi:10.1039/C4FD00159A
- Wang, Z. L. (2020). On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy, 68, 104272. doi:10.1016/j.nanoen.2019.104272
- Wang, Z. L., & Wang, A. C. (2019). On the origin of contact-electrification. Materials Today, 30, 34-51. doi:10.1016/j.mattod.2019.05.016
- Xia, X., Fu, J., & Zi, Y. (2019). A universal standardized method for output capability assessment of nanogenerators. Nature Communications, 10, 4428. doi:10.1038/s41467-019-12465-2
- Yang, G., Yan, Z., & Xiao, T. (2012). Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity. Applied Surface Science, 258(22), 8704-8712. doi:10.1016/j.apsusc.2012.05.078
- Yang, Y., Maeng, B., Jung, D. G., Lee, J., Kim, Y., Kwon, J., An, H. K., & Jung, D. (2022). Annealing Effects on SnO2 Thin Film for H2 Gas Sensing. Nanomaterials, 12(18), 3227. doi:10.3390/nano12183227
- Yüzüak, D. G., Karagöz, C., & Yüzüak, E. (2022). Exploring the Sputtering Conditions in ZnO Thin Film for Triboelectric Nanogenerator Electrode. International Journal of Energy Research, 46(14), 20494-20500. doi:10.1002/er.7777
- Zakaria, Y., Aïssa, B., Fix, T., Ahzi, S., Samara, A., Mansour, S., & Slaoui, A. (2022). Study of wide bandgap SnOx thin films grown by a reactive magnetron sputtering via a two-step method. Scientific Reports, 12(1), 15294. doi:10.1038/s41598-022-19270-w
- Zheng, Y., Liu, T., Wu, J., Xu, T., Wang, X., Han, X., Cui, H., Xu, X., Pan, C., & Li, X. 2022). Energy conversion analysis of multi-layered triboelectric nanogenerators for synergistic rain and solar energy harvesting. Advanced Materials, 34(28), 2202238. doi:10.1002/adma.202202238
- Zhu, G., Peng, B., Chen, J., Jing, Q., & Wang, Z. L. (2015). Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy, 14, 126-138. doi:10.1016/j.nanoen.2014.11.050
Year 2023,
, 149 - 156, 27.06.2023
Gizem Durak Yüzüak
,
Mehmet Çetin
,
Ercüment Yüzüak
Project Number
Tubitak-119M972
References
- Babu, A., Rakesh, D. Supraja, P., Mishra, S., Kumar, K. U., Kumar, R. R., Haranath, D., Mamidala, E., & Nagapuri, R. (2022). Plant-based triboelectric nanogenerator for biomechanical energy harvesting. Results in Surfaces and Interfaces, 8, 100075. doi:10.1016/j.rsurfi.2022.100075
- Breckenridge, R. G., & Hosler, W. R. (1953). Electrical properties of titanium dioxide semiconductors. Physical Review, 91(4), 793-802. doi:10.1103/PhysRev.91.793
- Bondarenko, A. S., & Ragoisha, G. A. (2005). EIS Spectrum Analyser. In: Pomerantsev A. L. (Eds.), Progress in Chemometrics Research (pp. 89-102). Nova Science Publishers: New York. URL: http://www.abc.chemistry.bsu.by/vi/analyser/
- Chandra Bose, A., Thangadurai, P., Ramasamy, S., & Purniah, B. (2005). Impedance spectroscopy and DSC studies on nanotructured SnO2. Vacuum, 77(3), 293-300. doi:10.1016/j.vacuum.2004.10.007
- Chen, J., & Wang, Z. L. (2017). Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator. Joule, 1(3), 480-521. doi:10.1016/j.joule.2017.09.004
- Gao, C., Li, X., Zhu, X., Chen, L., Zhang, Z., Wang, Y., Zhang, Z., Duan, H., & Xie, E. (2014). Branched hierarchical photoanode of titanium dioxide nanoneedles on tin dioxide nanofiber network for high performance dye-sensitized solar cells. Journal of Power Sources, 264, 15-21. doi:10.1016/j.jpowsour.2014.04.059
- Khandelwal, G., & Dahiya R. (2022). Self-powered active sensing based on triboelectric generator, Advanced Materials, 34(33), 2200724. doi:10.1002/adma.202200724
- Lee, N. H., Yoon, S. Y., Kim, D. H., Kim, S. K., & Choi, B. J. (2017). Triboelectric Charge Generation by Semiconducting SnO2 Film Grown by Atomic Layer Deposition. Electronic Materials Letters, 13(4), 318-323. doi:10.1007/s13391-017-6289-0
- Lee, J. R., Kim, D. G., Lee, G. H., Park, Y. H., & Song, P. K. (2007). Characteristics of IZSO films deposited by a co-sputtering system. Metals and Materials International, 13(5), 399-402. doi:10.1007/BF03027875
- Liang, X., Liu, S., Yang, H., & Jiang, T. (2023). Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: Unit Integration and Network Construction. Electronics, 12(1), 225. doi:10.3390/electronics12010225
- Muthukrishnan, A. P., Lee, J., Kim, J., Kim, C. S., & Jo, S., (2022). Low-temperature solution-processed SnO2 electron transport layer modified by oxygen plasma for planar perovskite solar cells. RSC Advances, 12(8), 4883-4890. doi:10.1039/D1RA08946C
- Shen, W., Ou, T., Wang, J., Qin, T., Zhang, G., Zhang, X., Han, Y., Ma, Y., & Gao, C. (2018). Effects of high pressure on the electrical resistivity and dielectric properties of nanocrystalline SnO2. Scientific Reports, 8, 5086. doi:10.1038/s41598-018-22965-8
- Tasneem, N. T., Biswas, D. K., Adhikari, P. R., Gunti, A., Patwary, A. B., Reid, R. C., & Mahbub, I. (2022). A self-powered wireless motion sensor based on a high-surface area reverse electrowetting-on-dielectric energy harvester. Scientific Reports, 12, 3782. doi:10.1038/s41598-022-07631-4
- Terrier, C., Chatelon, J. P., & Roger, J. A. (1997). Electrical and optical properties of Sb:SnO2 thin films obtained by the sol-gel method. Thin Solid Films, 295(1-2), 95-100. doi:10.1016/S0040-6090(96)09324-8
- Turan, E., Kul, M., & Akın, S. (2022). Structural and optical investigation of spray-deposited SnO2 thin films. Journal of Materials Science: Materials in Electronics, 33(19), 15689-15703. doi:10.1007/s10854-022-08472-7
- Ouyang, P., Zhang, H., Wang, Y., Chen, W., & Li, Z. (2014). Electrochemical & microstructural investigations of magnetron sputtered nanostructured ATO thin films for application in Li-ion battery. Electrochimica Acta, 130, 232-238. doi:10.1016/j.electacta.2014.03.021
- Wang, Z. L. (2013). Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano, 7(11), 9533-9557. doi:10.1021/nn404614z
- Wang, Z. L. (2015). Triboelectric nanogenerators as new energy technology and self-powered sensors-Principles, problems and perspectives. Faraday Discussions, 176, 447-458. doi:10.1039/C4FD00159A
- Wang, Z. L. (2020). On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy, 68, 104272. doi:10.1016/j.nanoen.2019.104272
- Wang, Z. L., & Wang, A. C. (2019). On the origin of contact-electrification. Materials Today, 30, 34-51. doi:10.1016/j.mattod.2019.05.016
- Xia, X., Fu, J., & Zi, Y. (2019). A universal standardized method for output capability assessment of nanogenerators. Nature Communications, 10, 4428. doi:10.1038/s41467-019-12465-2
- Yang, G., Yan, Z., & Xiao, T. (2012). Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity. Applied Surface Science, 258(22), 8704-8712. doi:10.1016/j.apsusc.2012.05.078
- Yang, Y., Maeng, B., Jung, D. G., Lee, J., Kim, Y., Kwon, J., An, H. K., & Jung, D. (2022). Annealing Effects on SnO2 Thin Film for H2 Gas Sensing. Nanomaterials, 12(18), 3227. doi:10.3390/nano12183227
- Yüzüak, D. G., Karagöz, C., & Yüzüak, E. (2022). Exploring the Sputtering Conditions in ZnO Thin Film for Triboelectric Nanogenerator Electrode. International Journal of Energy Research, 46(14), 20494-20500. doi:10.1002/er.7777
- Zakaria, Y., Aïssa, B., Fix, T., Ahzi, S., Samara, A., Mansour, S., & Slaoui, A. (2022). Study of wide bandgap SnOx thin films grown by a reactive magnetron sputtering via a two-step method. Scientific Reports, 12(1), 15294. doi:10.1038/s41598-022-19270-w
- Zheng, Y., Liu, T., Wu, J., Xu, T., Wang, X., Han, X., Cui, H., Xu, X., Pan, C., & Li, X. 2022). Energy conversion analysis of multi-layered triboelectric nanogenerators for synergistic rain and solar energy harvesting. Advanced Materials, 34(28), 2202238. doi:10.1002/adma.202202238
- Zhu, G., Peng, B., Chen, J., Jing, Q., & Wang, Z. L. (2015). Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy, 14, 126-138. doi:10.1016/j.nanoen.2014.11.050